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Abstract—Real-time surface recognition has become a crit-
ical factor for ensuring safe walking of intelligent biped robots
in a complex human living environment. This work aims at
enabling wide cost-efficient implementation of sensing solu-
tions for surface recognitionvia walking-patternclassification
by restricting the necessary hardware to a cost-economic
microprocessor and a single type of force sensors. For exper-
imental analysis, we explored the walking-pattern classifi-
cation performance using a framework which combines a
support vector machine (SVM) and four time-domain feature
descriptors, i.e., mean of amplitude (MA), integral of absolute
value (IAV), variance (VAR), and root mean square (RMS).
During the online pattern classification, the dynamical force-
sensory-data stream was extracted using a real-time overlapped-window-based method. Multiple binary SVM classifiers
were applied for solving the multi-class classificationproblem, due to the reasonably high accuracy and the relatively small
complexity for hardware implementation, allowing simultaneous strength exploitation of above four individual feature
descriptors with a one-versus-one (OVO) strategy. The experimental results, obtained with 250 samples/surface, verified
93.8% mean average precision, 93.7% average accuracy and recall rates of 98.8%, 91.6%, 82.0%, 98.0%, 98.0% for smooth
wood, rough foam, smooth foam, thick carpet, and thin carpet, respectively. Only the dynamical force-sensing data were
employed for a 10-fold cross validation, which enabled the high processing speed of 0.73 ms/stride. The developed
cost-efficient and accurate surface-recognition system can be useful for ensuring safe in-door locomotion for the biped
robot and can help the robot to better understand the human living environment by increasing its sensing diversity.

Index Terms— Biped robot, force sensor, multi-class SVM, surface recognition, walking-pattern classification.
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I. INTRODUCTION

ROBOT systems are fostered by intelligent techniques
throughout the years and are very soon expected to assist

and support humans in lots of potential applications. Safe
locomotion on different surfaces in an unknown environment
is considered as one of the major challenges for robots.
With the increasing trend towards home service and medical
treatment [1], biped robots with walking capabilities like
humans have gained much attention. Recognition techniques
for identifying various unknown terrains or underlying sur-
faces turn out to be essential for improving the navigation
ability of robots [2].

A. Related Works
To maintain the stability during walking for biped robots,

many studies have proposed methods which are based
on an understanding of the human learning mechanisms,
like push recovery strategies [3], [4] or joint trajectory
combinations [5], [6]. Multifarious recognition approaches
have been developed as well for various robots over the
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last decades, being based on diverse types of sensors and
combinations of sensors.

Sensor types can be divided into two main categories, i.e.,
contact sensors and non-contact sensors. Non-contact sensing
solutions are programmed to mimic human senses and use
mostly visual, acoustical, or optical sensors for terrain/surface
classification. Robotic vision can be a direct and effective
way to perceive the environment changes during locomotion
as reported in [7], [8]. However, the vision-based recogni-
tion solutions usually tend to be susceptible to luminance
changes, while having additionally high computational cost
and comparatively low processing speed. Acoustics-based
solutions [9], [10] classify the terrains by listening to the
sounds generated during robot locomotion. Unfortunately,
classification performance is to a great extent susceptible to
background noise. Optical sensors such as lasers [11] may turn
out to be ineffective for correct perception of the environment,
when the laser beam is blocked because the receiver cannot
always be maintained properly. More significantly, the surface
properties can be hardly perceived by the non-contact sensing
solutions due to the missing physical interactions between the
robot and the ground surface.

The actual contact information through the physical inter-
action is of considerable significance for understanding envi-
ronments, so as to select an appropriate mode of motion for
the robot. Thus, numerous contact-sensor-based schemes are
investigated by relying on direct contact information of the
ground properties through application of different tactile sen-
sors such as inertial measurement unit (IMU) or force/torque
(F/T) sensor. DuPont et al. [12] proposed an autonomous
classification algorithm for wheeled vehicles using measured
IMU data and obtained a classification accuracy >70% by
applying a probabilistic neural network (PNN) classifier.
An accelerometer-based intelligent tire [13] was developed for
wheeled ground robots to use measured acceleration signals
for terrain classification based on a fuzzy-logic algorithm. Sim-
ilar previous approaches [14]–[16] use IMUs equipped with
axis accelerometer sensors for surface identification through
measurement of the body vibration.

In comparison to the mobile robots such as wheeled robots
and tracked robots [17], legged robots can operate in a much
greater scope of surface diversities due to the high number
of degrees of freedom (DoF). In other words, legged robots
are more flexible for traversing various obstacles demanding
greater control complexity. Shill et al. [18] used a one-legged
hopping robot equipped with a pressure-sensing array to
generate pressure images through direct surface contact, which
enabled similarly textured surfaces to be distinguished with
≈99% identification accuracy. Ho et al. [19] designed a
fabric sensor as the robot’s skin that was applied for sur-
face identification using discrete wavelet transform (DWT)
and artificial neural network (ANN). Wu et al. [20] applied
capacitive tactile sensors at the feet of a small hexapod robot
for measuring the contact forces and identified terrain types
using the support vector machine (SVM) with 82.5% accuracy.
Multiple sensors can be combined to obtain better surface
recognition performance [21]. Extensive surface-classification
studies, using different sensors and classifiers, were performed

with various legged robots such as hexapod robots [20]–[22],
quadruped robots [23]–[26], and biped robots [27]–[29].

Safe locomotion is an essential requirement for the biped
robots, since they are more likely to fall, even when walking
on a flat surface, when compared to other legged robots.
Matsumura et al. calculated mean and standard deviation of
each inertial-sensor data, extracted from the full body of a
small humanoid robot as features, constructed the classifier
by decision trees [27] and achieved 85.7% precision. The
fourth-order moment of the ground reaction force was
determined as a feature for detecting unexpected large
disturbances before mapping them to a logistic regression
model for biped robots in [28]. Raw data from force sensors,
installed on the humanoid robot NAO, were separated and
normalized as inputs for two intelligent classifiers, i.e., ANN
and extreme learning machine (ELM), resulting in ≈99%
accuracy in [29]. The data from the F/T sensors, mounted
on a humanoid robot’s ankles, were further reduced by fast
Fourier transform (FFT) and DWT, before transmission to
the performed learning procedure using SVM, achieving
precisions of about 95% and 91%, respectively, in [30].
Classifiers based on deep neural networks (DNNs) have been
shown to have superior surface-classification performance
when compared with the SVM model. But the DNNs-based
approaches require large datasets for training and large
computing resources for online recognition, which may not
be feasible in practical robotic applications. A more complex
solution, combining CNN with SVM, was reported in [31] for
tactile-object recognition with higher recognition accuracy.

Inspired by the previous works on surface recognition and
the enormous potential of biped robots for indoor applica-
tions in human-populated environments, such as hospitals,
offices, and homes, we focus on developing intelligent and
cost-economic surface-recognition designs for biped robots.
We have previously reported a surface-property recognition
scheme for stable humanoid-robot walking by using the k-
nearest-neighbor (kNN) classifier in [32] and evaluated the
influence of the walking speed on the recognition accuracy
in [33]. The kNN classifier was found to require more com-
puting resources, such as memory space for storing sufficient
reference samples, for achieving higher classification accuracy.

B. Contributions
An online multi-class SVM classification solution was

applied for high-accuracy and hardware-efficient dynamic
recognition of robot-walking characteristics, employing cost-
economic, ultra-thin, and velocity-sensitive membrane force
sensors [38]. Specifically, the contributions and novelties of
this research work lie in

• applying four computing-efficient time-domain features
and their combination to reduce interferential noise
of force sensor data, while using an overlapped-
window-based method for real-time walking surface
recognition;

• developing a resource-efficient and accurate multi-class
SVM algorithm, based on physical interactions between
indoor surfaces and the robot feet, for reducing resource
consumption and computing time;
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Fig. 1. Overall framework of dynamic walking-pattern recognition for
surface identification by biped robots based on force sensors.

• implementing economic hardware-oriented classification
based on the low-cost Arduino UNO board.

Consequently, this work proposes a hardware-oriented clas-
sification approach, implemented with a resource-efficient
multi-class SVM algorithm, which reduces resource consump-
tion and computing time, while leading to improved classifi-
cation accuracy and fast recognition speed in the multi-class
problem of detecting multiple surfaces for a biped robot in
real time. From a practical point of view, hardware-oriented
implementation can be considered as crucial for enabling
a fast and accurate recognition model in general low-cost
biped-robot applications with limited resources.

The paper organization is as follows. Section II describes
the methodology of feature extraction and multi-class classifi-
cation used for our force-sensory walking-pattern recognition.
Section III describes the system development for surface-
properties recognition. In Section IV, experimental setups and
results are presented and discussed. This paper concludes
in Section V and our plan for future work is exhibited in
Section VI.

II. RECOGNITION METHODOLOGY

A. Overall Recognition Framework
We propose the method shown in Fig. 1 to identify the flat

floor surface on which a biped robot is walking, by sensing the
physical interactions between the floor surface and the robot
feet, using cost-economic force sensors. The core constructs
of the surface-recognition methodology lie in the two phases
of feature extraction and walking-pattern classification.

Considering the lower complexity for implementation on
a microprocessor with limited hardware resources and the
comparable recognition accuracy, a modified multi-class
SVM approach with linear kernel is proposed for recogni-
tion of multiple indoor surfaces by the biped robot. Four
computing-efficient feature descriptors were estimated indi-
vidually with the multi-class SVM and were further allied
together for getting higher classification accuracy.

B. Feature Extraction of Force-Sensory Information
The precise ground-contact forces normally include lots of

interferential noise, making the raw force-sensory information
improper for direct use in the surface-recognition task. A
proper feature descriptor can grasp the core information,
reduce computational cost and noise interference, and improve

the classification accuracy. Thus, feature extraction becomes
an extremely important part of the surface recognition.

Time-domain features are the most popular in classification
tasks, due to their comparatively efficient computing proper-
ties. Inspired by the feature description for vibration signals
like electromyography (EMG) signals [34], [35], we have
investigated the impacts of the following four most-widely
used descriptors on the recognition performance, when using
time-domain force-sensory data.

1) Root Mean Square (RMS): RMS measures the amplitude
of force sensory data, which is similar to the standard deviation
calculation as well. Its mathematical expression is defined as

vRM S(n) =
√

1
N

∑N
k=1 x2

k (n). (1)

2) Integral of Absolute Value (IAV): The IAV feature is more
commonly known as the mean absolute value (MAV) [36].
The MAV value of the force-sensory signal within an analysis
window is estimated according to

v I AV (n) = 1
N

∑N
k=1 |xk(n)|. (2)

3) Variance (VAR): The variance measures the average
power of the force-sensory signal according to

vV AR(n) = 1
N−1

∑N
k=1 x2

k (n). (3)

4) Mean of Amplitude (MA): MA has also been named wave
length (WL) [36] as it estimates the waveform complexity
in each length interval of two consecutive sensor-data points
according to

vM A(n) =
∑N−1

k=1
|xk+1(n) − xk(n)|. (4)

Here, n is a time index in (1) to (4) for dynamic feature
extraction from N sensor-data points of the force sensors.

C. Classification Strategy for Multi-Class SVM
To estimate the performance of the surface recognition,

we employed the SVM classifier with a linear kernel, because
of its high classification accuracy as well as its high compu-
tational efficiency, leading to economical hardware-resource
requirements. A new surface type for observation can be easily
assigned to one labeled category in the testing phase, based on
a comparatively small number of trained model parameters.

The standard SVM was originally designed for binary
classification tasks, separating data to one or the other of two
categories by the hyperplane which can be expressed as

fSV M (v) = ωT · ϕ(v) + b, (5)

where the column vector ω = (ω[1]; ω[2]; …; ω[d]) refers to
a d-dimensional weight vector that is normal to the separating
hyperplane, b is a scalar bias, and ϕ(v) is the kernel function
for mapping the original feature space to another space for
solving various classification problems. Kernel functions such
as Gaussian basis function or polynomials can be applied
for non-linearly separable classes. Nevertheless, the SVM
classifier with a linear kernel, that uses its original feature
space with a self-mapping function ϕ: ϕ(v) → v, is employed
in this work to improve hardware efficiency. The row vector
v = (v[1], v[2], …, v[d]) is the dynamical feature vector.
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Since the original standard SVMs do not support multi-class
classification natively, meta-strategies are required for solving
a multi-class problem. Two typical extension approaches from
the binary SVM classifier are: one-versus-one (OVO) and one-
versus-rest (OVR). The OVR approach constructs m binary
SVM models, where m is the number of classes. Each binary
SVM model is sequentially trained by marking one class with
a positive label and the remaining classes with a negative label.
The OVR approach chooses the class which classifies the new
observation sample with the greatest margin to the hyperplane
according to

classOV R ≡ arg max(ωT
i · ϕ(v) + bi), i = 1, . . . , m. (6)

By contrast, the OVO strategy builds m(m − 1)/2 binary
SVM classifiers, splitting a m-class classification task into a
set of binary-classification tasks for each pair (i, j) of combined
classes, to solve the quadratic optimization problem:

min
ωi j ,bi j ,ξi j

1

2
ωT

i j ωi j + C
∑

k

ξi j (k),

s.t . yk

(
ωT

i j · ϕ(v(k)) + bi j

)
≥ 1 − ξi j (k), ξi j (k) ≥ 0.

(7)

Here, a vector of labels y ∈ Rm , such that yk ∈ {+1,
−1} is the class of the ϕ(v(k)), where k = 1, …, m. C is a
penalty parameter and ξi j (k) is a slack variable for reducing
the training errors. The OVO strategy predicts the class of the
test data by using the voting strategy of “max-wins”, which
chooses the class with the highest vote number from all binary
classifiers.

In comparison, the OVR approach needs to construct fewer
binary SVM models than the OVO method, but the OVR
method is not a very elegant approach for solving multi-class
problems, since it usually leads to an imbalanced binary
classification where the number of positive samples normally
differs tremendously from the number of negative samples.
The time consumption for training classifiers in the OVO
approach may on the other hand decrease significantly, since
the training dataset for each binary classifier is much smaller.

III. SYSTEM DEVELOPMENT

We developed a robust and cost-effective system for surface
recognition shown in Fig. 2, which measures the real-time
physical interactions between the different surfaces and the
robot feet by force sensing. The developed system enables
a safe walking of a biped robot with an appropriate motion
through an adaptive feedback control. The system is based on
acquiring knowledge about the present surface type by recog-
nizing the vibration signals from the force sensors mounted
beneath the two feet of the biped robot.

A. Robot Platform
In our experiments we use the Kondo KHR-3HV humanoid

robot [37], which is mainly constructed by 17 servomotors
and a robot controller implemented on an RCB-4HV board,
as illustrated in Fig. 3. The desired robot motion is designed
in advance by a specific software tool installed on a master

Fig. 2. Diagram of overall system for dynamic motion adjustment for the
biped robot, based on surface-property recognition using force sensors.

Fig. 3. Hardware of the biped-robot platform, equipped with the robot
controller (c) and two force sensors (d) for dynamical surface recognition,
using the Kondo KHR-3HV robot shown in front view (a) and side
view (b).

computer, i.e., the Motion Control System (MCS). The setting
parameters of the complete robot motion are then loaded onto
the microcomputer of the robot controller through a COM port
at a maximum communication speed of 1.25 Mbps.

B. Sensor and Data Preprocessing
Cost-economic, ultra-thin, and velocity-sensitive membrane

force sensors [38] are attached beneath each foot of the
biped robot for measuring the real-time physical interactions
between the underlying surface and the robot feet. The active
area of 39.6 mm2 of the force sensor responds to an increase
in force during robot movement, due to inertia and gravity
effects. The force-sensory signals are converted by the force
sensors to vibrational voltage signals in the range of [0V, 5V],
that act as system inputs. Preprocessing steps are necessary
to achieve faster digital data computing. As analog signals,
the equivalent vibrational voltages are sampled at a desired
sampling rate and converted by an analog-to-digital conversion
to serial discrete voltage points, which are described as 10-bit
digital data, according to the equation: Vout_sensor(i) =
5∗Dforce(i)/1024. Here Vout_sensor(i) refers to output
voltages transmitted from the force sensors, and Dforce(i)
represents the integer values between 0 and 1023 after AD
conversion. We employed an Arduino UNO board as the
programmable microprocessor for data pre-processing, data
collection, and computation for online surface recognition.
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Fig. 4. Raw data from the force sensors mounted under right and left
foot of the biped robot, when walking on the 5 kinds of flat surfaces at
190 frames/stride.

C. Data Collection
One critical task for investigating the surface-recognition

performance, based on the physical interaction of robot feet
and the ground surface, is the surface selection. As illustrated
in Fig. 4, five representative types of flat indoor surfaces, listed
below, were tested in our experiments.

• Surface-A: smooth wood surface
• Surface-B: rough foam surface
• Surface-C: smooth foam surface
• Surface-D: thick carpet surface
• Surface-E: thin carpet surface
We collected the time series of data streams Dforce(i) of

both feet by a program that is designed and loaded by the
Computational Control System (CCS) while the biped robot
was walking on the aforementioned five types of surfaces,
respectively. M sequential data points of Dforce(i), sampled
from each force sensor at a frequency of fsamp = 20Hz, were
grouped into measurement samples for one stride of the biped
robot. Consequently, the total time of a stride of the biped
robot can be calculated according to: Tstride = M/ fsamp.

Since the surface properties (e.g., rigidity, softness, smooth-
ness, etc.) lead to characteristic changes in the voltage values
from the force sensors, surfaces can be distinguished by
the differences in the voltage-waveform characteristics of the
walking patterns.

D. Overlapped-Window-Based Feature Extraction
To reduce noise interference and improve the classification

accuracy, raw force-sensor signals are mapped into higher-
dimensional feature vectors, which describe the physical
interaction between robot feet and surface more efficiently
before the recognition processing. A stepwise segmentation
is operated on the time stream of input sensor data, which
uses the overlapped windowing technique. The streamed
sensor data are sampled by sliding a feature window of N
(0 < N < M) sensor-data points in size with consecutive steps
of a custom-length interval �t(0 < �t < tM), as illustrated
in Fig. 5. The overlapping windows bring more information
for pattern identification, when compared to the adjacent-
window-based approach (i.e., N = M and �t = tN =

Fig. 5. Overlapped-window-based feature extraction by sliding a N-point
feature window of tN time length in consecutive steps of Δt length over
the raw force-sensor data.

tM) [39]. The dynamic streaming-feature spaces are created
by descriptors from the dynamic time-series raw-sensor data
inside an overlapped feature window that moves in steps �t
over time. The processing procedure of feature extraction
is equivalent to a convolution between the raw-sensor data
and the sliding N-point window. The four kinds of feature
descriptors, i.e., RMS, IAV, VAR, and MA, were investigated
and compared in our implementation.

E. OVO-Based Multi-Class Recognition Architecture
We employed an improved OVO approach, implemented on

the microprocessor ATmega328P, for solving the multi-class
classification problem during online surface recognition. The
improved OVO approach was estimated with respect to two
aspects.

Firstly, the multi-class SVM approach was independently
operated with each individual feature descriptor. The trained
model for multi-class recognition is represented by a set
of parameters {(ω1, b1), …, (ωm(m−1)/2, bm(m−1)/2)} where
ωi = (ωi [1]; ωi [2]; …; ωi [d]) is the d-dimensional vector for
the i-th binary SVM classifier, i = 1, 2, …, m(m −1)/2, while
m is the number of possible walking surfaces. Dimensionality
d of the weight vector ωi is the same as that of the employed
feature vectors. The m(m − 1)/2 pairs of trained model para-
meters are respectively sent to the parallel SVM classification
module for online parallel recognition, as illustrated in Fig. 6.
Raw sensor data {x(1), x(2), …, x(N)}, grouped into the
N-point windows, are used to calculated the d-dimensional
feature vectors ( f (1), f (2), …, f (d)) by one of the four
aforementioned descriptors. For each binary SVM classifier,
the sequential components of the dynamic feature vectors are
multiplied by the corresponding dimensional component of the
trained weight vector. The summation of the multiplications,
accumulated by an adder tree, is further added up with the bias
to obtain the separating hyperplane of the two different classes.
Specifically, the OVO strategy for a multi-class recognition
task, using an individual feature descriptor, has to be modified
according to the number of possible surfaces. For identifying
the m = 5 surfaces, ten binary classifiers should be combined
to solve the multi-class recognition problem. The possible
votes for one class are within the range of [0, 4] as there
are four paired binary SVM classifiers related to the same
surface for a total of five surfaces. Although there is only
one maximum value in most cases, two and more identical
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Fig. 6. Overall architecture for online multi-class surface recognition based on the extended OVO voting strategy.

maximum vote values are possible. For example, the votes
for each surface {surface-A, surface-B, surface-C, surface-D,
surface-E} can lead to {3, 3, 3, 1, 0}, {3, 3, 2, 2, 0}, {3, 3,
2, 1, 1}, or {2, 2, 2, 2, 2} configurations.

Secondly, all feature descriptors are combined for winner-
surface voting to further improve the classification perfor-
mance. The basic implementation architecture is the same as
for the first OVO voting strategy, operating with individual
feature descriptors. The main change is the simultaneous
classification-result evaluation of all m(m − 1)/2∗4 binary
SVM models with the four feature descriptors by the statistical
module in Fig. 6. This means, the classification decision is
made by a majority vote from these m(m − 1)/2∗4 binary
SVM classifiers, based on the above described OVO strategy
for multi-class recognition with a single feature descriptor.
Since four feature descriptors are now used simultaneously,
the range of the possible winner votes for one class changes
to [0, 16].

In case of 2 maxima in the above two solutions, the winner
class was determined by the direct binary classification results
between the two involved surfaces. For more than 2 identical
maximum votes the class with a smallest index was picked as
the winner.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the surface-recognition performance on different
indoor-floor surfaces by identifying the walking patterns of the
biped robot, we performed a k-fold Cross Validation (CV)
in our experiments to investigate the proposed recognition
approach, using the improved multi-class SVM classifiers
based on the OVO strategy.

Cross validation is an effective and reliable resampling
technique for testing the model performance by computing the
average of the validation results observed in k iterations. In our
experiments, the five representative flat-floor indoor surfaces,
described in Section III.C, were investigated. Force-sensory
data of 250 robot strides per surface at 190 frames/stride
walking speed, were collected for estimating the classification
performance of the proposed SVM models using 10-fold CV.

In 10-fold CV, the force sensory dataset was split into
10 independent subsets of equal size. The proposed SVM
model was trained for 10 times, each time using 9 of the
10 subsets for training while using the remaining one subset to

compute the outcomes of the model evaluations, e.g., accuracy,
precision, and recall. The average of the testing outcomes,
observed in the 10 iterations, is then reported as the 10-fold
CV estimate.

A. Dynamical Feature Extraction
We operated dynamical feature extraction on the raw force

sensory data before estimating the recognition performance of
the SVM architecture illustrated in Fig.6. To reduce the noise
interference and improve the classification accuracy, the SVM
classification was based on the dynamical feature vectors,
computed by the descriptors as defined in Section II.B and
applied the overlapped-window-based strategy as described in
Section III.D, rather than on the raw-force data.

Specifically, the raw force-sensory data during robot
walking were sampled and segmented into a sequence of
robot strides. Each stride is represented by M = 76 data
points, which results from the sampling rate of 50 ms/point
and the walking speed of 190 frames/stride. For extracting
the feature vectors, a feature-window size of N = M/2 points,
i.e., N = 38, was applied to slide over the force-sensory data
stream in a stepwise manner according to the overlapped-
window-based scheme. Further, a sliding step of 1 point (i.e.,
�t = 50 ms) between two adjacent feature windows was
chosen, as explained in Fig. 5.

The feature-vector dimensionality of one stride in each
feature space is supposed to be equivalent to N+M−1, which
results from the convolution operation for feature extraction
using N-point feature windows and M points of sensor data
per stride. However, the obtained streaming curves for the
four features remain to have an M-point period. In other
words, the dynamic feature vectors, calculated continuously
for online pattern recognition, resulted in the same dimension
“M” as for each robot stride. Figure 7 illustrates the separate
characteristics of the four time-domain feature spaces using
RMS, VAR, IAV, and MA, respectively, when the robot walks
on the five different surfaces. The different characteristics of
these surface-specific waveforms in the four feature spaces,
due to the physical-interaction impact, are applied for identi-
fying the corresponding surface. The impact of the waveform
differences in each feature space on recognition efficiency is
analyzed in the following sections.
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Fig. 7. Normalized four dynamic-feature streams (left foot) as calculated
by RMS, VAR, IAV, and MA descriptors, respectively, on 5 different
surfaces at 190 frames/stride walking speed.

Fig. 8. Examples for illustrating the robot transition between two
surfaces. Here, surface A indicates the smooth wood, B refers to the
smooth foam, and C represents the rough foam.

B. Binary SVM-Classification Performance
Considering the biped-robot transition between two sur-

faces, we evaluated the binary classification performance for
all two-surface pairs of the five investigated surfaces listed in
Section III.C. Figure 8 shows several real scenarios of robot
transition across two surfaces.

To verify the recognition performance for all 10 possible
pairs between the five investigated surfaces, we constructed the
respective binary SVM classifiers, and estimated their perfor-
mance in terms of precision, recall and accuracy, respectively.
To train each binary SVM classification model, 225 samples
per surface (i.e., 9 of the 10 folds) were used, and then the
trained model was applied to the 25 samples of the remaining
fold. This process was iterated for all 10 possibilities of the
remaining fold to obtain the 10-fold CV estimate.

The best average precision of the 10-fold CV with our
binary SVM classifications reached 100% for distinguishing
the thin-carpet surface (i.e., surface-E) from the thick-carpet
surface (i.e., surface-D) with all optional feature descrip-
tors. Besides, the average precision for distinguishing the
smooth-wood surface (i.e., surface-A) from the thin-carpet
surface (i.e., surface-E) was also 100% when employing RMS,
IAV or VAR, while 98.8% average precision were achieved

Fig. 9. Average accuracies of the 10-fold cross validation with the ten
possible binary SVM classifiers for the four individual feature descriptors,
i.e., RMS, IAV, VAR, and MA, with respect to all pairs of the five
investigated surfaces mentioned in Section III.C.

with MA. By contrast, the worst average precision with 10-fold
CV (RMS: 85.0%, IAV: 84.9%, VAR: 82.0%, MA: 78.9%)
happened for distinguishing the rough-foam surface (i.e.,
surface-B) from the smooth-foam surface (i.e., surface-C).

The best average recall with 10-fold CV reached 100%
for distinguishing surface-A from surface-E by employing
RMS, IAV or VAR, and for distinguishing surface-D from
surface-A and surface-E by employing MA. Approximately
99.2% of average recall rate was achieved with MA for paired
surfaces {A, E}. Similarly, the worst average recall with
10-fold CV happened for distinguishing the paired surfaces
{B, C}, i.e., RMS: 93.2%, IAV: 92.0%, VAR: 87.6%, MA:
86.8%.

To summarize the impact of our precision and recall analy-
sis, we calculated the average accuracies of each pair of
surfaces, using the binary SVM classifications, as illustrated
in Fig. 9. For the paired surfaces {A, E}, the best binary
accuracies were obtained as RMS: 100%, IAV: 100%, VAR:
100%, MA: 99.0%. Likewise, the worst case of the binary
accuracies (RMS: 88.4%, IAV: 87.8%, VAR: 84.2%, MA:
81.8%) happened for distinguishing of the paired surfaces {B,
C}. The results for the four feature descriptors reveal, that
the best binary-classification performance in terms of average
accuracy is reached with the RMS descriptor.

C. Multi-Class SVM Classification With Individual
Features

Binary classification is a one-surface versus another-surface
scheme, but a one-surface versus all-other-surfaces scheme,
which requires multi-class surface recognition, is essential
for practical applications of an intelligent biped robot in the
human living environment. To estimate the recognition per-
formance of the implemented architecture for the multi-class
SVM recognition, we combined the ten trained binary SVM
classification models corresponding to each pair of surfaces
as aforementioned for online multi-class recognition, basing
on the improved OVO approach. In the 10-fold CV estimate,
the average outcomes for 10 iterations of the multi-class SVM
classification were computed. We investigated the recognition
performance of the parallel SVM architecture, exhibited in
Fig. 6, using 25 instances of input robot strides (i.e., testing
samples) per surface per iteration.

The recall-rate concept for a given surface, corresponding
to the i-th class in our multi-class SVM system, is redefined
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Fig. 10. Confusion matrices of the average recall rates (%), employing
the OVO-based strategy for multi-class SVM surface recognition with five
different surfaces and a 10-fold CV estimate.

as

recallmult(i) = T Pi

T Pi + F Ni
. (8)

Here, TPi (i = 1, 2, …, m) is the number of the correctly
recognized surface for all testing-surface samples of the i-th
class and m (m = 5) is the number of surface classes. FNi is
the number of testing-surface samples of the i-th class, which
are incorrectly classified into a different class.

The resulting recall rates in each iteration (i.e., fold) of
the proposed OVO-based multi-class classification, employing
four individual feature descriptors, are listed in Table I.I,
Table I.II, Table I.III, and Table I.IV, respectively.

The maximum recall rate according to (8), basing on any
one of the four feature descriptors among the 5 surfaces,
could achieve 100%. The average recall rates, with 10 folds
of the multi-class SVM recognition system for the respective
surface, were further computed and summarized in the
confusion matrices, as illustrated in Fig. 10. Each row of the
confusion matrix gives the average proportional classification
distribution for all testing samples of the respective surface
with 10-fold CV. The RMS descriptor performed best among
the four feature descriptors with respect to the average recall
rate of the respective surface, i.e., {98.4%, 90.0%, 82.4%,
98.0%, 98.0%} corresponding to {surface-A, surface-B,
surface-C, surface-D, surface-E}, when using the OVO-based
multi-class SVM classification strategy.

Likewise, the definition of precision for the i-th class can
be expressed within multi-class SVM approach as

precisionmult(i) = T Pi

T Pi + F Pi
, (9)

where FPi is the number of surface-testing samples, incorrectly
recognized among all testing samples as belonging to the
i-th class. The experimental results of the average precisions,
according to (9) with 10 folds of the four feature descriptors

for each surface, are summarized in Table II. In particular, for
a thin-carpet surface employing the RMS descriptor, a maxi-
mum average precision of 99.19% is achieved with our multi-
class recognition system.

The overall accuracy of the whole multi-class SVM recog-
nition system is defined as

accuracymult =
∑m

i T Pi∑m
i S(i)

= 1

m

∑m

i
p(i, i). (10)

Here, S(i) is the total number of all testing-surface samples
for all five classes. The overall accuracy can be calculated by
the average proportional distribution p(i, i) in the diagonal line
at the i -th row and i -th column of the confusion matrices in
Fig. 10 as well, when measuring the same number of testing
samples for each surface. Therefore, the overall accuracies of
our multi-class SVM recognition system resulted in 93.36%,
91.92%, 89.12%, and 86.16%, concerning the four feature
descriptors RMS, IAV, VAR, and MA, respectively.

D. Multi-Class SVM Classification With Combined
Features

To further improve the classification performance of the
multi-class recognition system, we combined the four inde-
pendent multi-class SVM classifiers, which used one of the
four individual feature descriptors, into a single multi-class
SVM classifier. In other words, the winner surface is not
determined by voting individually, basing on one independent
feature descriptor, but results from the voting outcome using
all four feature descriptors. Thus, the vote for each surface
type is given by the summation of the classification results
from all m(m − 1)/2∗4 binary SVM classifiers, based on
the four feature descriptors and m surface classes (m =
5 in our investigation). The winner surface is determined
by these combined votes, based on the “max-win” strategy.
Additionally, the surface with a smaller index is selected as
the winner in the case of two or more identical maximum
votes in this section.

In the 10-fold CV estimate of the combined-feature strategy,
we achieved a best recall rate of 100% for at least one
of the 10 folds in the case of all five individual surfaces.
However, for average recall rates, they were just slightly
improved, as illustrated in Fig. 11, in comparison to the four
individual-feature-based multi-class SVM classifiers. Namely,
recall rates of 98.8% for smooth wood, 91.6% for rough
foam, 82.0% for smooth foam, 98.0% for thick carpet, and
98.0% for thin carpet were verified for the combined clas-
sifier, as exhibited by the diagonal values of the confusion
matrix. The individual precisions for each surface are listed in
Table III. A mean average precision of 93.8% was achieved
with the combined multi-class classifier. The overall accuracy
for the combined classifier resulted in 93.7%, according to the
integration over all binary SVM classifiers of the four different
descriptors in (10).

E. Comparison With the State-of-the-Arts
In this section, we present diversified types of

surface-recognition approaches for various robots, which have
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TABLE I
RECALL RESULTS FOR EACH INDIVIDUAL FOLD WITH FOUR INDIVIDUAL FEATURES. (I) RMS FEATURE, (II) IAV FEATURE,

(III) VAR FEATURE (IV) MA FEATURE

TABLE IV
COMPARISON WITH OTHER STATE-OF-THE-ART WORKS

been developed for different applications in recent years and
compare their classification performances with our results in
Table IV. The vision-based recognition solution [8] achieved
90% accuracy for eight surfaces, but normally asks for much
more computational resources and computing time for image
processing. Christie et al., [9] proposed an acoustics-based

terrain-classification solution with an OVO-based multi-class
SVM classifier and obtained up to 95.1% sensitivity (i.e.,
recall) with nose removal for hexapod robots, employing FFT
to extract spectral features and band features from the acoustic
information of each gait cycle. This increased the sensing
diversity for a more versatile solution of surface recognition.
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TABLE II
COMPARISON OF 10-FOLD AVERAGE PRECISION FOR MULTI-CLASS

SVM CLASSIFICATION

Fig. 11. Confusion matrix the average recall rates (%) for the 5 inves-
tigated surfaces, obtained with the OVO-based multi-class SVM clas-
sification and the combination of the RMA, IAV, VAR, and MA feature
descriptors.

TABLE III
PRECISION OF COMBINED MULTI-CLASS SVM CLASSIFIER

Shi et al., [16] reported a modified Laplacian SVM solution
of terrain classification for a four-wheeled mobile robot, based
on a vision sensor and an accelerometer, which achieved
90.95% total classification accuracy using time-domain
features and 93.3% accuracy using frequency-domain
features. Wu et al., [20] navigated hexapod the robot using
capacitive tactile sensors and an IMU, resulting in 82.5%
overall accuracy for recognizing eight surfaces by the SVM
classifier. Kertész [25] applied the FFT magnitude over the
data from four fused sensors for feature vectors and analyzed
the machine learning aspects with random forests (RFs),
thus achieving 94% accuracy when distinguishing six types
of indoor surfaces for a quadruped robot. A fusion scheme
of multiple sensors collects more useful information for
higher classification accuracy, but it requires more complex
computation. Besides, surface recognition based on a single
sensor type resulted in poor accuracy performance, such as
48.1% using an accelerometer or 62.7% using ground contact
force sensors [25]. Walas et al. [30] used the FFT and DWT
to produce feature vectors and performed a learning procedure
using SVM in two approaches. The best performance in [30]
led to 91.01±1.94% “mean precision” and 90.7%±1.94%

“mean recall” for the FFT approach. 95.16±0.80% “mean
precision” and 95.0%±0.82 % “mean recall” were achieved
for DWT approach. Our previous work employed kNN [32]
as classifier and achieved slightly lower overall accuracy and
average precision. Moreover, kNN requested more resources
for storing the references and resulted in longer computational
times. Note that the feature-descriptor combination in this
work is different from the OVA (One-Versus-All)-based form
in [32]. We fused all feature vectors produced from the four
feature descriptors together for direct winner-surface voting
in the combined multi-class SVM classifier. Besides, >10%
binary-accuracy improvement is achieved for each feature
descriptor using the SVM classifier, as compared to the kNN
classifier in [32]. The required computational times of the
applied schemes of the previous works, listed in Table IV,
which are equipped with different control systems, are
further influenced by the employed disparate measurements.
Nevertheless, the processing speed of 0.73 ms/stride in this
work is very competitive for real-time applications, according
to the analysis in Table IV.

V. CONCLUSION

In this work, we investigated the surface-recognition per-
formance for five indoor surfaces with different properties
via walking-pattern classification of a biped robot KHR-3HV,
based on cost-economic membrane force sensors, to ensure a
safe transition between different surfaces. To achieve robust
recognition results with an efficient hardware implementation,
the online surface-recognition system was implemented on an
RCB-4HV controller and a low-cost Arduino UNO board.
An overlapped-window-based feature-extraction method was
used for producing feature vectors from the dynamical
force-sensory data stream, applying four time-domain feature
descriptors, namely, MA, IAV, VAR, and RMS. Given the
multi-class recognition problem, 10 binary SVMs for each
individual feature descriptor were combined for multi-class
walking-pattern classification based on an extended OVO
strategy. Four feature descriptors were further fused with
respect to the winner-surface voting, achieving recall rates
of 98.8%, 91.6%, 82.0%, 98.0%, 98.0% for smooth wood,
rough foam, smooth foam, thick carpet, and thin carpet,
respectively. Additionally, 93.8% mean average precision and
93.7% average accuracy were obtained in this 10-fold cross
validation. The experimental results of this work show, that
our cost-economic approach can be useful for achieving robust
surface recognition and ensuring safe locomotion for biped
robots.

VI. FUTURE WORK

To better understand the human living environment and to
make the biped robot more intelligent in supporting human
beings, we plan in the future to employ several force sensors
beneath its feet. A concept extension to the increased feet
number of multi-legged robots is also promising. Besides,
more cost-efficient force sensing techniques such as the sens-
ing blankets are feasible for other robot types, like wheeled
robots. The use of various other sensors, like image sensors,
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for increasing the robot’s sensing diversity also belongs to
our future plan, thus achieving further increased stability and
recognition accuracy by combining an abundance sensory
data.
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