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Abstract—As one of the most important topics in image foren-
sics, resampling detection has developed rapidly in recent years.
However, the robustness to JPEG compression is still challenging
for most classical spectrum-based methods, since JPEG compres-
sion severely degrades the image contents and introduces block
artifacts in the boundary of the compression grid. In this article,
we propose a method to estimate the upscaling factors on dou-
ble JPEG compressed images in the presence of image upscaling
between the two compressions. We first analyze the spectrum of
scaled images and give an overall formulation of how the scal-
ing factors along with the parameters of JPEG compression and
image contents influence the appearance of tampering artifacts.
The expected positions of five kinds of characteristic peaks are
analytically derived. Then, we analyze the features of double
JPEG compressed images in the block discrete cosine transform
(BDCT) domain and present an inverse scaling strategy for the
upscaling factor estimation with a detailed proof. Finally, a fusion
method is proposed that through frequency-domain analysis, a
candidate set of upscaling factors is given, and through analysis
in the BDCT domain, the optimal estimation from all candidates
is determined. The experimental results demonstrate that the
proposed method outperforms other state-of-the-art methods.

Index Terms—Image forensics, image resampling detection,
JPEG block artifacts, scaling factor estimation.
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I. INTRODUCTION

IN THE past two decades, the widespread use of digital
cameras, along with image editing software [1], has given

rise to the demand of an automatic detector for tampered
images, which promotes the development of the forensics
field [2]–[4]. As a kind of passive image tampering detec-
tion method, resampling forensics refers to the detection of
image geometric transformations (e.g., scaling, rotation, and
shearing), which are actually achieved by numerical interpo-
lation and resampling. Resampling detection is one of the most
important topics in forensics, because malicious tampering is
usually performed by geometrically adapting some new image
elements to the original scene [5], and such adaption may
require the employment of geometric transformations.

Despite the diversity of the proposed methods, most of
the available detectors share a common processing structure.
In the first step, a residual signal from the observed image
is extracted as the feature of detecting resampling artifacts.
Depending on the foundation of each method, this signal can
be obtained in different ways. In the observation of the spe-
cific periodic correlations between the pixels of resampling
images, Popescu and Farid [6] proposed a global predictor to
extract the residual signal. With an attempt at reducing the
computational complexity, their method was later improved
by Kirchner [7] with a fast and local linear predictor, where
an automatic detector based on the maximum gradient of the
p-maps spectrum was proposed. Gallagher [8] and Mahdian
and Saic [9] proved that interpolated signals and their deriva-
tives exhibit periodicity in their second-order statistics, where
resampling artifacts are observable. Besides, the residual signal
including resampling traces can also be obtained by computing
the difference of predictor coefficients stemming from adjacent
rows/columns of the image [10].

In the second step, given the residual signal extracted
as mentioned above, a decision on whether the observed
image has been resampled can be rendered according to the
diverse criterion of each method. For example, a postpro-
cessing step is applied in the frequency domain to detect
the presence of spectral peaks, which is related to the peri-
odicities introduced by the resampling process [8], [9]. In
addition to applying postprocessing in the frequency domain,
some approaches (e.g., [11], [12]) directly check if a group
of candidate resampling factors satisfies the underlying linear
relationship induced by resampling and interpolation opera-
tion. Apart from the spectrum-based methods, other detectors
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avoid the frequency-based analysis by making use of a sup-
port vector machine (SVM) to take the final decision. For
instance, in [13] a set of features is gathered from the nor-
malized energy density for varying window size of the image.
While in [14], Vázquez-Padín et al. derived a detector capa-
ble of discriminating between upscaled images and genuine
images on the basis of SVD as well. This method was further
improved in [15]. Finally, most of these detection approaches
can also be oriented toward the parameter estimation of the
tampering operation, based on the fact that the frequency
of spectral peaks of the residual signal is directly related
to the resampling factor. One of the best estimators of the
resampling factor is proposed by Liu and Kirchner [16],
in which an end-to-end CNN framework is trained to esti-
mate the factor of a 64 × 64 image patch. Such CNN-based
methods [17]–[19] have attracted a lot of interest in recent
years. However, it is still challenging for downscaling fac-
tor estimation because the characteristics of the downscaling
scenario are much weaker [20].

The remaining problem of resampling forensics is the
robustness to lossy compression, for example, JPEG compres-
sion. Regardless of whether JPEG compression is implemented
before or after resampling operation, the performance of the
resampling detector will be seriously influenced, only if the
quality factor (QF) of JPEG compression is low enough.
On the one hand, JPEG compression is acting as the low
pass filter in the frequency domain. On the other hand, peri-
odic artifacts are introduced in the boundary of JPEG blocks,
which have similar statistics as the resampling signals. The
case of JPEG compressed images in the presence of resam-
pling before compression has been mentioned from the very
beginning [6], [8], [21]. Gallagher [8] proposed to ignore the
influence of post-JPEG compression on resampling artifacts
and regard JPEG compression as nearest neighbor interpo-
lation, which introduces prominent peaks to the frequency
domain in the location of k/8 (since the location of such
JPEG peaks is fixed, there is little effect on the performance
of the forensics detector as long as the characteristic peaks
of resampling do not overlap with JPEG peaks). Most subse-
quent research works in this regard adopted this standpoint.
However, our previous research [22] proposed that there are
nonlinear coupling effects between upscaling and JPEG com-
pression, shown as frequency mixing peaks. The case of JPEG
compression prior to resampling was first studied by Kirchner
and Gloe [23], which showed the spectral peaks that refer
to pre-JPEG compression would be shifted by the following
resampling operation. By detecting the shifted JPEG peaks, the
resampling factor can be estimated. This theory was inher-
ited by several other researchers [24]–[26]. In our previous
research [26], we constructed a statistic based on the interval
distribution of adjacent extremum points, which only respond
to the JPEG blocking artifacts despite resampling operation.
These statistics can help to estimate the resampling factor in
the case of downscaling. As the combination of the previous
two cases, the forensics of the resampling image with both
pre-JPEG and post-JPEG compression are much more diffi-
cult than the uncompressed case. In our previous work [27],
by denoising the investigated image to eliminate the JPEG

blocking artifacts, we proposed a double-JPEG upscaled fac-
tor estimation scheme to make the resampling peaks more
easily detected. Besides, the method of Bianchi and Piva [24]
can reverse the operation chain of double-JPEG compression
with the help of prior information on the resampling fac-
tor, given that the pre-JPEG compression is stronger than
the post-JPEG compression. Nguyen and Katzenbeisser [28]
found that the main difficulty of this case is the presence
of many suspicious peaks in the spectrum. Yet, no further
analyses and discussions could be found in these research
works.

In this article, we concentrate on the upscaling factor esti-
mation of double-JPEG compressed images in the presence of
image upscaling between the two compressions (abbreviated
as upscaled double-JPEG images in the following contents).
The tampering operation chain pre-JPEG-upscaling-post-JPEG
is decomposed into pre-JPEG-upscaling and upscaling-post-
JPEG, which are integrated into the scaling model in our
previous research [22], [26], respectively. For the case of
upscaling-post-JPEG, we surpass our previous research [22]
by giving a closed-form proof of the frequency mixing effect
under the simplification of the quantization effect in the block
discrete cosine transform (BDCT) domain. Then, the theo-
ries for pre-JPEG-upscaling model and upscaling-post-JPEG
model are combined, and we present that there are more than
20 characteristic peaks in the spectrum of upscaled double-
JPEG images, which can be classified into five groups. A
numerical simulation of the compression process based on the
2-D autoregressive model of order 1 [AR(1) model] [15] of
untampered images shows how the parameters of two JPEG
compressions influence the relative amplitude of different char-
acteristic peaks, along with various image contents. Since such
influence is indeterminate for a given tampering case, it is
hard to directly obtain the estimation of an upscaling fac-
tor from the frequency domain without any prior information.
Through the analysis of nonaligned double JPEG compres-
sion, we prove that the unique estimation of the upscaling
factor can be obtained in the BDCT domain with a proposed
inverse scaling strategy. The main contributions of this work
are as follows.

1) We present an in-depth analysis in the frequency domain
of the second-order statistics of upscaled double JPEG
images, which gives an exact formulation for the loca-
tion of all characteristic peaks. Based on this formu-
lation, a spectrum method is proposed to obtain some
candidates of the scaling factor.

2) We propose an inverse scaling strategy to select the
optimal estimation of the scaling factor between the
candidates, which is based on the statistical model in
the BDCT domain. The validity of the proposed strat-
egy is proved mathematically, along with the robustness
analysis under different scaling factors.

The remainder of this article is organized as follows. The
analysis of upscaled double JPEG images in frequency domain
and BDCT domain is shown in Sections II and III, respec-
tively. Section IV gives the whole process of the proposed
joint-domain fusion estimation method. Section V shows the
experimental results of the proposed method and discusses

Authorized licensed use limited to: Universidade de Macau. Downloaded on August 12,2021 at 06:55:43 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LU et al.: ROBUST ESTIMATION OF UPSCALING FACTOR 3

the robustness issues. Eventually, the concluding remarks and
future works are given in Section VI.

II. FREQUENCY-DOMAIN ANALYSIS OF SCALED IMAGES

In this section, a comprehensive analysis of scaling on JPEG
images is presented in the frequency domain. There are four
situations for scaled images when considering the operation
chain decompression-scaling-compression:

1) scaling on genuine images, where both the untampered
images and tampered images are stored in lossless-
compression format;

2) scaling on pre-JPEG images, where the untampered
images are stored in JPEG format and the tampered ones
are in lossless-compression format;

3) scaling on post-JPEG images, where the untampered
images are stored in lossless-compression format and
the tampered ones are in JPEG format;

4) scaling on double-JPEG images, where both the untam-
pered and tampered images are stored in JPEG format.

The first three situations have been deeply analyzed by the
previous works and the fourth situation, that is, the frequency
analysis of double-JPEG images, is the most important part of
this article.

The following parts of this section are organized as follows.
First, Section II-A briefly reviews the previous frequency anal-
ysis of the first three situations. Second, Section II-B combines
the previous research to explain the complicated frequency
structure of upscaled double-JPEG images. Using a simulation
on the AR(1) model, we also show how different tamper-
ing parameters and image contents influence the frequency
structure. The notation used hereafter is summarized in Table I.

A. Review of the Prior Works

Usually, the digital image is stored as a 2-D digital matrix
with finite size and finite set of values, for example, X =
[Xi,j] ∈ Z

M×N
l , where M and N are the size of matrix and

l is the number of the gray level. Since both scaling oper-
ation and BDCT transform are linear and separable in each
space dimension, to make the frequency domain analysis more
compact, we model the digital image as a 1-D discrete signal
with infinite length, denoted as x0(n) : Z → R. For genuine
images, this discrete signal x0(n) is a sample of analog signal
x0(t) : R → R.

According to Gallagher [8], when performing the scaling
operation with a factor of λ on x0(n), the scaled signal x1(n)

could be expressed as

x1(n) =
∑

i∈Z

x0(i)h
(n

λ
− i

)
(1)

where h(•) is the low-pass filter for interpolation, also known
as “interpolation kernel.” This function is symmetric around 0
and has finite support [26], for example, h(x) �= 0 ⇐⇒ x ∈
[ − d, d].

The genuine images are the original output of the digi-
tal camera, in which prominent random components can be
found even if the input optical field is a smooth function [29].

TABLE I
NOTATION

Without loss of generality, we only consider the random com-
ponents of genuine images and assume that the genuine signal
x0(n) is wide-sense stationarity

mx0(n) = E{x0(n)} = μ (2)

cx0(n, τ ) = Cov{x0(n), x0(n + τ)} = c0(τ ) (3)

where E{•} and Cov{•} are the expectation operator and
covariance operator for the random process, respectively.
Then, the scaled signal x1(n) should be a two-ordered cyclosta-
tionary process [30], which means the autocorrelation function
of it varies periodically with the variable n, and prominent
spectral lines can be found in the DFT spectrum of the
autocorrelation function with the frequencies of

ω(i)
rs � frac

(
i

λ

)
and ω(i)

rs,sy � 1 − ω(i)
rs (4)

where

frac(x) � x − �x	 (5)

where �•	 is the round-down function, i is the order of har-
monic waves, and ω

(i)
rs,sy are symmetric peaks of ω

(i)
rs . To

see the whole proof of (4), refer to our previous research
works [22], [26].

The higher the order of harmonic, the weaker the corre-
sponding peak is. Usually, only the first harmonic peaks ω

(1)
rs

are prominent in Rx1(ω, τ). For the case of upscaling, the
general factor estimation method is to take the highest peak
between frequencies 0 and 0.5 as ω

(1)
rs , and with (4), the

estimation would be

λ̃1 = 1

ω
(1)
rs

and λ̃2 = 1 − λ̃1 (6)
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where λ̃1 > 2 and 1 < λ̃2 < 2, as a consequence of aliasing.
In most previous research works, the aliasing result was not
distinguished anymore.

The model of image scaling on pre-JPEG images is a simple
generalization of the genuine one mentioned above. It is well
known that the quantization in BDCT domain introduces block
artifacts in the boundary of each block [31]–[33]. Robertson
and Stevenson [31] proved that the JPEG quantization error
ex0(n) in the space domain is a two-ordered cyclostationary
process if the genuine signal is wide-sense stationary

rex0
(n, τ ) = rex0

(n + 8k, τ ) ∀k ∈ Z (7)

where rex0
(n, τ ) is the autocorrelation function of ex0 .

Denoting the scaled version of ex0(n) as eλ
x0

(n) and recall-
ing (1), we have

eλ
x0

(n) =
∑

i∈Z

ex0(i)h
(n

λ
− i

)
. (8)

Liu et al. [26] formulated the relationship between the cor-
relation function of eλ

x0
(n), denoted as reλ

x0
, and λ in the case

of scaling an image after JPEG compression

reλ
x0

(n + 8λk, τ ) = reλ
x0

(n, τ ) ∀k ∈ Z (9)

which means eλ
x0

is two-order cyclostationary in a period of
T = 8λ. Based on (9), Liu et al. [26] found the connec-
tion between the spectral peaks of scaled pre-JPEG images,
namely, shifted JPEG peaks ωsfjp, and the scaling factor λ

ω
(i)
sfjp = i

8λ
. (10)

In our previous work [22], apart from JPEG peaks ωjp
and scaling peaks ωrs, we find a third kind of peak in the
frequency spectrum of upscaled post-JPEG images. We define
these peaks as JPEG-scaling-mixing peaks

ω
(i)
jp-rs-mix � ω(1)

rs + ω
(i)
jp � frac

(
1

λ
+ i

8

)
. (11)

In this previous work [22], we also ignore the quanti-
zation effect in low BDCT channels and propose a BDCT
high channels vanish model based on the assumption that the
coefficients in high channels are discarded by the JPEG com-
pression. This model is facilitated to capture the essence of the
frequency mixing effect. Based on the BDCT high channels
vanish model, the operation of JPEG compression is simplified
to a linear operator. Equation (11) can be proved by a clas-
sical analysis in the DFT domain. More details can be found
in [22].

B. Frequency-Domain Analysis of Scaling on Double-JPEG
Images

Combining the conclusion in the previous works together,
we obtain two qualitative rules for JPEG quantization and
scaling of two-order cyclostationary signals.

1) Frequency Translation Rule: When a two-order cyclosta-
tionary signal with period T is scaled by interpolation

in a factor of λ, the period of the output signal is scaled
to Tλ

x1(n) = Iλ
{

x[T]
0 (n)

}
= x[Tλ]

0 (n) (12)

where Iλ{•} is the operator of scaling, and the super-
script [T] denotes the cyclostationary period. Especially,
the discrete stationary signal can be considered as
cyclostationary with T = 1

2) Frequency Mixing Rule: When a two-order cyclostation-
ary signal with period T is compressed by any blockwise
linear transformation and quantized in the transform
domain and then decompressed, the introduced compres-
sion error is also cyclostationary in a period of frequency
mixing

x1(n) = JT1

{
x[T2]

0 (n)
}

= x[T2]
0 (n) + e[mix(T1,T2)]

x
[T2]
0

(n) (13)

where JT1{•} is the operator of quantization in the BDCT
domain, the subscript [T1] is the size of the DCT block,
and the frequency mixing term is the summation of
different periods

e[mix(T1,T2)]

x
[T2]
0

(n) =
∑

k

e

[
T1T2

T1+kT2

]

x
[T2]
0

(n). (14)

Especially, the period T1 of blockwise compression is
also included in mix(T1, T2).

Applying the two rules on the inspected operation chain
pre-JPEG-upscaling-post-JPEG with a stationary signal x0(n)

as input, we have

x2(n) = J8{Iλ{J8{x0(n)}}}
= J8

{
Iλ

{
x0(n) + e[8]

x0

}}

= J8

{
x[λ]

0 (n) + e[8λ]
x0

(n)
}

= x[λ]
0 (n) + e[8λ]

x0
(n) + e[mix(8,λ)]

x[λ]
0

(n) + e[mix(8,8λ)]

e[8λ]
x0

(n)

(15)

which means there are five kinds of intrinsic cyclostationary
components in the output signal x2(n), shown as five kinds of
peaks in the variance spectrum.

1) Scaling peaks, denoted as ω
(i)
rs � frac(i/λ), and in most

time only the first harmonic ω
(1)
rs is prominent. These

peaks are caused by the term x[λ]
0 (n).

2) JPEG peaks, denoted as ω
(i)
jp � frac(i/8), and the

amplitude for different i is almost the same. These
peaks are caused by the post-JPEG compression noise,
which come from the last two terms e[mix(8,λ)]

x[λ]
0

(n) and

e[mix(8,8λ)]

e[8λ]
x0

(n).

3) JPEG-scaling-mixing peaks, denoted as ω
(i)
jp-rs-mix �

ω
(1)
rs +ω

(i)
jp , and the amplitude for different i seems inde-

terminate. These peaks are caused by the frequency mix-
ing between scaling signal and post-JPEG compression
noise, shown as the third term e[mix(8,λ)]

x[λ]
0

(n).

4) Shifted JPEG peaks, denoted as ω
(i)
sfjp � frac(i/8λ).

These peaks are caused by the rescaled pre-JPEG noise,
shown as the second term e[8λ]

x0 (n).

Authorized licensed use limited to: Universidade de Macau. Downloaded on August 12,2021 at 06:55:43 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LU et al.: ROBUST ESTIMATION OF UPSCALING FACTOR 5

Fig. 1. Spectrum of Lena with double JPEG compression and upscaling.
QF1 = QF2 = 70, λ = 2.6. The feature peaks have been marked. y axis is
in logarithmic scale.

5) JPEG-shifted-JPEG-mixing peaks, denoted as
ω

(i,j)
jp-sfjp-mix � frac(ω(i)

sfjp + ω
(j)
jp ). These peaks are

caused by the frequency mixing between scaled pre-
JPEG noise and post-JPEG compression noise, shown
as the last term e[mix(8,8λ)]

e[8λ]
x0

(n).

One example of the test image Lena, which undergoes
double JPEG compression and scaling, is shown in Fig. 1,
with five different peaks marked. Obviously, almost all of
the prominent peaks have been captured by our proposed
model.

Intuitively, one would consider that there should be an ana-
lytical expression for the amplitude of different peaks with
parameters of tampering as variables, since the analyses in the
previous section are quantitative. Unfortunately, this idea does
not work, because the error of JPEG compression has been
simplified in our analysis, which is the BDCT high channels
vanish model. In fact, there are more than five influencing
factors in the operation chain pre-JPEG-upscaling-post-JPEG,
including the QF of pre-JPEG QF1, QF of post-JPEG QF2,
scaling factor λ, the kind of scaling kernel, and the contents of
genuine image. The last one within them, the image contents,
is the hardest one to grasp and is also the most important one.
One example is that if the genuine signal x0(n) is white noise,
the out signal x2(n) will only show the periodicity of scaling
λ, discarding the blocking artifacts of JPEG compression.

In order to thoroughly analyze the influences on the spec-
trum of double-JPEG upscaled images affected by different
parameters, inspired by the recent research [15] of signal scal-
ing, we choose an AR(1) model as the genuine signal x0(n).
The AR(1) model is a mathematical tool to simulate the texture
and luminance characteristics of nature images. The content of
the simulated image is subjected to its parameters. The inher-
ent complexity of this forensics problem can be shown in the
spectrum of the tampered AR(1) signal when we change the
parameters of tampering operation and image contents. The
2-D AR(1) model is, in fact, a finite impulse response of 2-D
white noise

X = UNUT (16)

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Simulation of AR(1) model. N = 1000, Q = 100, and the variance
σ 2

X is normalized by 255. (a) is the baseline with QF1 = QF2 = 70, λ = 1.7,

ρ = 0.1, and σ 2
X = 0.9. (b)–(f) only change one parameter of (a), respectively.

(b) λ = 1.1. (c) QF1 = 40. (d) QF2 = 40. (e) σ 2
X = 0.1. (f) ρ = 0.9. Y axis

is in logarithmic scale.

where N is an (M + Q − 1) × (M + Q − 1) random matrix
with i.i.d random variable elements, for example, N(i, j) ∼
N (0, σ 2

N), and U is a Toeplitz matrix of size M × (M +Q−1)

U(i, j) =
{

ρQ−1−(j−i), if (j − 1) ∈ [0, Q − 1]
0, otherwise

(17)

where ρ is the one-step correlation coefficients, and Q is the
length of the truncation window. There are five parameters
of this simulation, for example, QF1, QF2, λ, ρ, and σ 2

X ,
where σ 2

X is the variance of X and is controlled by σ 2
N as

σ 2
X = σ 2

N/(1 − ρ2).
The process of using the AR(1) model for parameter estima-

tion on double-JPEG upscaled images can be summarized as
follows. First, we use the AR(1) model to generate the texture
image as mentioned above. Later, the operation chain is per-
formed on the generated image, which is JPEG compression
followed by upscaling and JPEG compression again. In this
way, we obtain a double-JPEG upscaled image. Finally, the
spectrum of this tampered image is extracted for frequency
analysis. In each combination of five parameters, several
samples of X are simulated to undergo tampering, and the
estimation of variance spectrum is the average of all samples.
The cases for six different combinations are shown in Fig. 2,
where Fig. 2(a) is the control group and is different from each
other with only one parameter.
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Some conclusions can be drawn from this simulation. First,
the decrease of λ would weaken the relative amplitude of
suspicious peaks, as shown in Fig. 2(b), according to the
experimental results on natural images. In fact, these suspi-
cious peaks are almost invisible when λ < 1. This means
the classical estimation method should work well when λ is
not too high. Second, the image contents have great influence
on the relative amplitude of all characteristic peaks, shown in
Fig. 2(e) and (f). In some cases, especially when the image
is too dim or smooth, it is hard to distinguish ω

(i)
rs from other

characteristic peaks, which is the main difficulty of classi-
cal spectrum-based methods. However, enough information for
parameter estimation is preserved in the low BDCT channels,
which will be shown in the next section.

III. BDCT DOMAIN ANALYSIS OF SCALED DOUBLE

JPEG IMAGES

From the previous analysis, we know that the power spec-
trum of upscaled double JPEG images has a complicated
structure, shown as many suspicious characteristic peaks with
different amplitude. The main reason is that the process of
post-JPEG compression has strong nonlinear effect, resulting
in a frequency mixing phenomenon for a periodic input signal.
Although the relative amplitude of these characteristic peaks
is undeterminable, it is possible to obtain some candidates
of the upscaling factor with the help of the aforementioned
formulations. The concrete process is described in Section IV.

What we are concerned about is how to select the optimal
estimation of the upscaling factor from the candidates. Inspired
by the classical research of nonaligned double JPEG compres-
sion (NA-DJPG) forensics [32], [33], we propose an inverse
scaling strategy, which zooms the inspected signal by a fac-
tor of 1/λ and then investigates the distribution of DCT
coefficients. This idea is straightforward because in the clas-
sical research of NA-DJPG, the gridding shift of pre-JPEG
compression is estimated by enumerating all shift parameters,
where the BDCT coefficients will indicate the quantization
effect of pre-JPEG compression only if the BDCT transform
is aligned with the pre-JPEG compression. The double JPEG
compression with upscaling can be seen as a variant of NA-
DJPG, where the gridding of pre-JPEG compression is not
shifted but zoomed.

In the rest of this section, we will prove the validity of the
inverse scaling strategy and discuss its robustness with respect
to different scaling factors.

A. Model of BDCT Domain Quantization and Inverse
Scaling

Without loss of generality, the following analysis is imple-
mented on 1-D signals and 1-D BDCT transform. Assume that
an original uncompressed signal x is quantized in the BDCT
domain

y(1) = D(Q(Dx)) and x(1) = D−1y(1) (18)

where x is an infinite vector of random variables

x = [x1, x2, . . . , xn, . . . ]T . (19)

D and D−1 are the matrix of the BDCT transform and inverse
BDCT transform, which are block diagonal with each subma-
trix in the diagonal as the standard 8×8 DCT transform matrix,
and Q(•) and D(•) are the model quantization and dequan-
tization processes. Considering that x has finite moment and
infinite support, then the BDCT coefficients y(1) are discrete
random variables

Pr
{

y(1)
i = a

}
> 0 ⇐⇒ a = mqi, m ∈ Z (20)

where qi is the quantization step of Q(•). Then, we consider
the process of upscaling with factor of λ1

x(2) = �λ1 x(1) (21)

�λ1(i, j) = h(j/λ1 − i). (22)

This equation is the matrix form of (1), where �λ1 is the
upscaling matrix of a specific interpolate kernel, and is a sparse
matrix for most common kernels.

Based on our inverse scaling strategy, the scaled signal x(2)

is zoomed by the second factor λ2 and then BDCT transformed

x(3) = �λ2x(2) and y(3) = Dx(3). (23)

Combining (23) with (22), we have

y(3) = D�λ2�λ1D−1y(1)

= D�λ2,λ1 D−1y(1)

= D�λ2,λ1 DTy(1)

= D�
λ2,λ1

y(1) (24)

where �λ2,λ1 is the transform matrix of a successive zooming
operation, where λ1 and λ2 are the factor of first and second
zooming, respectively. Consider that both BDCT transform
and its matrix D are orthogonal; hence, the inverse BDCT
transform matrix D−1 is equal to the transposed version DT .
The matrix product D�λ2,λ1 DT is the 2-D BDCT transform
of the matrix �λ2,λ1 , denoted as D�

λ2,λ1
.

It is obvious that when λ2 = λ1 = 1, the transform matrix
�λ2,λ1 is the identity matrix, hence y(3) = y(1), the same as
the situation of λ1 ∈ Z, λ2 = 1/λ1. For other situations, the
transform matrix �λ2,λ1 is not an identity matrix if one of the
scaling factors is not integer. A detailed discussion and proof
of the successive geometric transformations can be found in
the research of Chen et al. [30]. In the next section, we will
discuss in which case the inverse scaling images have the most
prominent characteristics in the BDCT domain.

B. Probability Distribution of BDCT Domain Quantization
and Inverse Scaling

Once �λ2,λ1 is not an identity matrix, D�
λ2,λ1

should not be
sparse, and the variable y(3) that we finally inspect is a linear
combination of y(1)

y(3)
i =

∑

j

D�
λ2,λ1

(i, j)y(1)
j . (25)

The probability distribution function (PDF) of y(3)
i can be

derived by a multiple convolution of y(1)
j

fy(3)
i

(x) = f
d(i,1)y(1)

1
(x) ∗ f

d(i,2)y(1)
2

(x) ∗ · · · ∗ f
d(i,j)y(1)

j
(x) ∗ · · · (26)
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where

f
d(i,j)y(1)

j
(x) = 1

d(i, j)
fy(1)

j

(
x

d(i, j)

)
(27)

d(i, j) = D�
λ2,λ1

(i, j). (28)

Although this multiple convolution is intractable, an approx-
imate analysis can be applied. According to the centralized
energy property of BDCT, most nonzero elements in each
row of D�

λ2,λ1
should be close to zero. We permutate the row

elements of D�
λ2,λ1

in descending order

{d(i, 1), d(i, 2), . . . , } = {d(i, [1]), d(i, [2]), . . .}
d(i, [1]) ≥ d(i, [2]) ≥ d(i, [3]) · · · (29)

Without loss of generality, we assume that one element is
dominant in the corresponding row, inspired by the concept
of “diagonally dominant”

d(i, [1]) >
∑

j>1

∣∣d
(
i,

[
j
])∣∣. (30)

Hence, y(3)
i in (26) can be considered as the summation

between the prominent element and other elements

y(3)
i = D�

λ2,λ1
(i, [1])y(1)

[1] + y(1)
[1] (31)

where

y(1)
[1] =

∑

j>1

D�
λ2,λ1

(
i,

[
j
])

y(1)

[j] . (32)

Meanwhile, (26) can be rewritten as follows:

fy(3)
i

(x) = f
d(i,1)y(1)

1
(x) ∗ f

d(i,2)y(1)
2

(x) ∗ · · · ∗ f
d(i,j)y(1)

j
(x) ∗ · · ·

= f
d(i,[1])y(1)

[1]
(x) ∗ f

d(i,[2])y(1)
[2]

(x)

× · · · ∗ f
d(i,[j])y(1)

[j]
(x) ∗ · · · (33)

Here, we just rearrange the order of f
d(i,[j])y(1)

[j]
(x) in (26).

Combined with (31) and (32), (33) can be replaced with the
convolution between the PDF of the prominent element and
other elements

fy(3)
i

(x) = f
d(i,[1])y(1)

[1]
(x)

×
(

f
d(i,[2])y(1)

[2]
(x) ∗ · · · ∗ f

d(i,[j])y(1)

[j]
(x) ∗ · · ·

)

= f
d(i,[1])y(1)

[1]
(x) ∗ f

d(i,[2])y(1)
[2] + · · · + d

(
i,

[
j
])

y(1)

[j] + · · ·(x)

= f
d(i,[1])y(1)

[1]
(x) ∗ f∑

j>1 D�
λ2,λ1

(i,[j])y(1)

[j]
(x)

= f
d(i,[1])y(1)

[1]
(x) ∗ fy(1)

[1]
(x). (34)

Although each variable y(1)
[j] is discrete random variable,

the linear combination y(1)
[1] has degraded into continuous ran-

dom variable in some sense, which converges uniformly to the
Gaussian variable, according to CLT (central limit theorem).
Equation (25) is then simplified as a summation of a discrete
random variable with a continuous random variable, and the
corresponding PDF (34) should be a single convolution

fy(3)
i

(x) = f
d(i,[1])y(1)

[1]
(x) ∗ fy(1)

[1]
(x)

=
∑

n

f
d(i,[1])y(1)

[1]
(n)fy(1)

[1]
(x − n)

=
∑

n

f
d(i,[1])y(1)

[1]

(
nd(i, [1])q[1]

)
fy(1)

[1]

(
x − nd(i, [1])q[1]

)

=
∑

n

f[1]
(
ki,[1]n

)
fy(1)

[1]

(
x − ki,[1]n

)
(35)

where

f[1](x) = f
d(i,[1])y(1)

[1]
(x) (36)

ki,[1] = d(i, [1])q[1] (37)

where ki,[1] is the resized version of the quantization step q[i].
The image of f

d(i,[1])y(1)
[1]

(x), which is the PMF of d(i, [1])y(1)
[1] ,

should be discrete spectral line with equal interval ki,[1].
Because fy(1)

[1]
(x) is an unimodal distribution, once the width

of fy(1)
[1]

(x) is smaller than ki,[1], the image of fy(3)
i

(x) should be

approximated to f
d(i,[1])y(1)

[1]
(x) with each discrete spectral line

extended into a peak. Such image shows a trace of periodicity.
In this situation, the information of the quantization step can
be restored from the PDF. Besides, if the width of fy(1)

[1]
(x) is

close or bigger than ki,[1], the shifted term fy(1)
[1]

(x − ki,[1]n)

will overlap with fy(1)
[1]

(x − ki,[1](n + 1)), which will elimi-

nate the periodicity of fy(3)
i

(x). Since the width of fy(1)
[1]

(x) is

bounded by the variance of y(1)
[1] , we propose a rough condi-

tion of which the distribution of y(3)
i preserves the periodicity

of first quantization

2σy(1)
[1]

< d(i, [1])q[1] (38)

σ 2
y(1)

[1]
=

∑

j>1

d
(
i,

[
j
])2

σ 2
y(1)

[j]
. (39)

Under the i.i.d assumption of y(1), (38) can be further
interpreted as

2σy(1) < r(i; λ1, λ2)q (40)

r(i; λ1, λ2) = d(i, [1])/

⎛

⎝
∑

j>1

d
(
i,

[
j
])2

⎞

⎠
1/2

(41)

where r(i; λ1, λ2) is defined as the “row-dominant ratio.” Note
that in (40), the variance term σy(1) is determined by the
image content, and the quantization step q is also fixed before
investigated by the forensics estimator. Hence, the bigger the
row dominant ratio r(i; λ1, λ2) is, the more prominent the
periodicity of fy(3)

i
(x) is.

C. Numerical Simulation of BDCT Domain Quantization
and Inverse Scaling

Since r(i; λ1, λ2) is controlled by the two scaling factors
λ1 and λ2, by enumerating different values of λ2 and investi-
gating the periodicity of fy(3)

i
(x), we can estimate the value of

λ1. To further illustrate the relationship between r(i; λ1, λ2)

and λ1, λ2, numerical simulation is applied for different ker-
nels and different scaling factors, and the result is shown as
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(a) (b) (c)

Fig. 3. Simulation of r̄min(λ1, λ2) for different kernels in form of pseudocolor maps. (a) Linear. (b) Cubic. (c) 1-D lanczos3.

a pseudocolor map in Fig. 3. The scaling matrix �λ2,λ1 with
finite size is used to calculate r(i; λ1, λ2). Since r(i; λ1, λ2) is
a vector for fixed λ1, λ2, the minimal of this vector is selected.
To make the “row-dominant ratio” more visually pleasant, we
transform it into a “normalized row-dominant ratio”

r̄(i; λ1, λ2) = d(i, [1])/

⎛

⎝
∑

j∈Z+
d
(
i,

[
j
])2

⎞

⎠
1/2

. (42)

Note that compared to (41), the index of summation is
changed. The minimal element of vector r̄(i; λ1, λ2) is selected

r̄min(λ1, λ2) = min
i∈Z+ r̄(i; λ1, λ2). (43)

The result of numerical simulation shows that for fixed λ1,
the value of r(i; λ1, λ2) achieves the maximum only when
λ2 = 1/λ1, according with intuition. The diagonal element in
the left bottom is smaller than these in the right upper, which
implies a bad performance of the inverse scaling strategy when
λ1 ≈ 1. However, this can be conquered if �λ2 is selected as
the pseudoinverse of �λ1 , which is applied in the proposed
method. It is worth noting that in the right bottom of the fig-
ure, some points have similar values to the diagonal elements,
which happens when λ2 = 2/λ1, namely, “half-inverse scal-
ing.” However, in experiments we found this have little effect
on the final estimation.

IV. PROPOSED METHOD

In this section, a blind estimation method for the upscaling
factor of the double JPEG image is proposed, which is based
on the analysis of the spectrum structure and BDCT domain
feature in previous sections. Note that the proposed method
is a pure estimation method, because there has been many
methods [13], [28], [34] for the classification and detection
of image upscaling, and some of these methods are also very
robust to pre-JPEG compression and post-JPEG compression.
For a image under investigation, all of the information about
post-JPEG compression can be acquired from the file header.
The main problem is the estimation of the upscaling factor and
parameters of pre-JPEG compression. To simplify our discus-
sion, we assume that the image inspected has already been
correctly classified as having undergone double-JPEG com-
pression and upscaling between two compression. A block
diagram of the proposed method is shown in Fig. 4.

Fig. 4. Block diagram of the proposed method.

The proposed method has three main steps.
1) Frequency-Domain Estimation: The power spectrum of

the investigated image is calculated, and several candi-
dates of the upscaling factor are obtained.

2) BDCT-Domain Estimation: The inverse scaling strategy
is applied to the investigated image, and the optimal
estimation is selected from these candidates.

3) Joint-Domain Estimation: The confidence of the optimal
estimation is examined to decide whether this estimation
should be modified by the frequency-domain estimation.

A. Frequency-Domain Estimation

The situation of upscaled double JPEG image is far more
complicated than upscaled genuine image. As shown in Fig. 1,
more than 20 feature peaks exist in the spectrum of inspected
image, and there is no clear winner among those peaks except
for the JPEG peaks ω

(i)
jp , which provide no useful information

about scaling and pre-JPEG compression. Hence, we have to
ignore the amplitude information of each feature peak and
classification for each peak, and the spectrum is then reduced
to a peaks-location-vector

vf = [ω1, ω2, . . .], vf ∈ R
n, s.t. ω1 < ω2 < · · · (44)

The mapping from the upscaling factor λ to vf is an injection,
but not bijection. However, for a given vector vf , the num-
ber of its preimages is finite. For a given double-compressed
image, several candidates of upscaling factor λ can be selected
by inversing this mapping. Inspired by Popescu and Farid’s
work [6], a searching-matching approach is used to solve this
problem as follows.

1) A table is constructed that contains the theoretical posi-
tions of all the feature peaks discussed in Section III for
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all possible value of the upscaling factor. Considering
the fact that an over-upscaled image will be too blurred,
we will restrict ourself to 1 < λ < 2.5, with a step
size �λ = 0.01. Not all the feature peaks are con-
sidered, since some of them are too weak. For the
scaling peaks, only the first harmonic ω

(1)
rs is included.

All of the JPEG peaks are ignored for their fixed loca-
tion. All of the JPEG-scaling-mixing peaks ω

(i)
jp-rs-mix

are included. For the shifted JPEG peaks ω
(i)
sfjp, the first

two are included, that is, i = 1, 2. For the JPEG-shift-
JPEG-mixing peaks ω

(i,j)
jp-sfjp-mix, only the ones related

to the first shifted JPEG peaks are included, that is,
i = 1, j = 1, 2, . . . , 7. Finally, for each value of λ, 17
feature peaks are considered. To be brief, the table con-
struction can be summarized in three steps as follows.
First, for all the possible value of the upscaling factor,
we generate a double-JPEG upscaled image with the
corresponding factor and extract its variance spectrum
by [8]. Second, we gather the location of the spectral
peaks as mentioned above as the theoretical position of
the corresponding factor. Finally, all theoretical positions
of all the possible factors are added together to construct
the table.

2) Calculate the spectrum of the image under investiga-
tion using the method in [8], denoted as fs(ω). To be
specific, the spectrum extraction step can be briefly
summarized as two steps. The first step is to com-
pute the second derivative of each row of the input
image. The second step is to average over rows and
compute the corresponding DFT. After the spectrum
is extracted, the local maximum points in the spec-
trum are selected with a fixed interval of �ω = 0.01.
Both the location and amplitude of these maximum
points are preserved, with the one corresponding to
JPEG peaks excluded, resulting in a tuple sequence
vs = [[ω1, fs(ω1)], [ω2, fs(ω2)], . . . , ]. Then, the ampli-
tude elements fs(ωi) in this sequence are normalized by
the maximum one of them. The final result is denoted
as vn

s , which should include all of the feature peaks.
3) For each value of λ in the matching table, we count how

many candidates in the tuple sequence vn
s are located

in the corresponding 17 theoretical positions. Since the
spectrum of digital image is discrete and the location
of one feature peak is a rational number, we consider a
match if a candidate ωi in vn

s is around the two neighbors
of the theoretical position. The counting result is also
weighted by the normalized amplitude of each candidate
log(f n

s (ωi)). Finally, the λ values with the top N highest
count are taken as the candidates of optimal estimation
and sent to the next step of estimation in the BDCT
domain. Here, we set N = 6 and the result candidates
set is denoted as �c = {λc

1, λ
c
2, . . . , λ

c
6}.

B. BDCT-Domain Estimation

Once the candidate set of the upscaling factor �c is
obtained, the inverse scaling strategy is applied to the inspected

image X(0), which is then transformed into BDCT coefficients

X(1)
i = �λc

i X(0), λc
i ∈ �c (45)

Y(1)
i,dx,dy = Ddx,dyX(1)

i , dx, dy ∈ {0, 1, . . . , 7} (46)

where Ddx,dy is the grid shifted version of the BDCT transform
matrix, with dx and dy as the latent variable of grid shift in
each dimension. Then, the empirical distribution function for
each channel of BDCT coefficients is calculated

h(n; i, dx, dy, j) =
∑

k,l

χ{
n−0.5≤Y(1)

i,dx,dy,j(k,l)≤n+0.5
} (47)

j ∈ 1, 2, . . . , 9

where χ{•} is the indicative function of the probability event,
and Y(1)

i,dx,dy,j is the jth channel of Y(1)
i,dx,dy, subscript j in a

zigzag scanning order. Because the energy of natural image is
concentrated on the low frequencies, only the first nine chan-
nels of Y(1)

i,dx,dy,j are considered. To measure the quantization
effects of the empirical distribution, we adopt the “integer peri-
odicity maps” in [32], since it is unsupervised and robust. The
quantization step qi is an integer in most situations, and only
the frequencies that are reciprocal of an integer are considered

H(m; i, dx, dy, j) = ∣∣
∑

n

h(n; i, dx, dy, j)e−j 2πn
m

∣∣, m ∈ Z. (48)

It seems that the maximum element in H(m; i, dx, dy, j) is
the one corresponding to the optimal estimation. However,
this assumption would be wrong in most situations, because
H(m; i, dx, dy, j) has not been normalized with respect to i and
j, where H(m; i, dx, dy, j) corresponding to the minimal λc

i and
maximal m is prone to be the maximum element. Since the
changes of grid shift dx, dy have little influence on the total
energy, the spectrum of coefficients is normalized over these
two dimensions

H(m; i, dx, dy, j) = H(m; i, dx, dy, j)∑
dx′,dy′ H(m; i, dx′, dy′, j)

. (49)

Based on the normalized version, the optimal estimations λ̂j

of the upscaling factor are obtained for all channels j

λ̂j = λc
îj

where îj = arg max
i

max
dx,dy,m

H(m; i, dx, dy, j). (50)

C. Joint-Domain Estimation

Since the first nine channels in the BDCT domain are
used for the optimal estimation, there are nine individual
estimations obtained in the previous section, that is, �̂ =
{λ̂1, λ̂2, . . . , λ̂9}. In most cases, these nine estimations would
not be completely identical. There are many possible reasons
for this inconsistency.

First, the DC channel may perform the behavior of pre-
JPEG compression no matter which factor of the inverse
scaling is considered. This is caused by the pure color regions
in the image, in which the neighboring m × m, m > 8 pixels
have the same color. For an 8×8 block in such a region, only
the DC channel has nonzero value. No matter what the value
of λ is, the grid of post-JEPG compression is aligned with
pre-JPEG compression in such region. Hence, the distribution
of DC channels in pure color regions is similar to the one of
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Fig. 5. Performance in terms of the MAE for upscaling factor estimation with different variables. (a) λ, averaged over all QF1 and QF2. (b) QF1, averaged
over all QF2 and λ. (c) QF2, averaged over all QF1 and λ.

aligned double-JPEG images. For an image with much regions
of pure color, the proposed BDCT domain estimation method
would select random answer from the DC channel. A solution
to this problem is directly ignoring the answer estimated by
the DC channel.

Second, the noise introduced by post-JPEG compression is
ignored in the inverse scaling strategy, which would destroy
the quantization trace of pre-JPEG compression, especially
when QF2 < QF1. This phenomenon has been verified in the
research of nonaligned double-JPEG compression [32], [33].
When the trace of pre-JPEG compression is completely
destroyed by post-JPEG compression, the BDCT domain
method should lose its efficiency, which means that the esti-
mation selected by each channel should be randomly picked
from the candidates set �c. Although we do not have any prior
information about pre-JPEG compression, just by inspecting
the consistency of nine estimation λ̂j, we can know whether
these estimations are valid or not. In particular, if more than
seven of λ̂j are identical, the mode of them is adopted as the
final estimation. Otherwise, these estimations are excluded. In
this case, since QF1 > QF2, the trace of pre-JPEG compres-
sion is also very weak in the frequency spectrum, and the
scaling peaks ω

(i)
rs = i/λ should be with the highest amplitude

in the spectrum. Hence, the final estimation is acquired by the
classical frequency-domain estimation method, for example,
the one from [8].

V. EXPERIMENTS

To evaluate the performance of the proposed method in
a quantitative way, experiments are conducted over a large
group of test sets, which differs in the parameters of tamper-
ing. These test sets originate from 500 different uncompressed
images captured by Nikon cameras, which belong to the
Dresden Image Database [35], in consistent with the previous
research.

We pretreated the genuine images before tampering by
graying and downsampling to avoid the influence of CFA
interpolation [6], [23], [26], [30]. Then, the 500 grayscale
images (1504 × 1000 pixels) are tampered by an operation
chain of pre-JPEG-upscaling-post-JPEG. The corresponding
parameters of the operation chain are the upscaling factor
λ, the QF of pre-JPEG compression QF1, and the QF of

post-JPEG compression QF2. Because the JPEG peak is in
the same location as the first harmonic of λ = {1.6, 2.0},
all of the considered algorithms will fail in the situation, so
the corresponding situations are ignored. The parameter set
of the upscaling scale is � = {1.1, 1.2, 1.3, 1.4, 1.5, 1.7,

1.8, 1.9, 2.1, 2.2, 2.3, 2.4, 2.5}, with the uniform distribu-
tion as priori assumption. Since the bicubic kernel is the most
popular one on the Internet, only the bicubic kernel is consid-
ered. To avoid the influence of different image sizes, after the
upscaling step, the tampered image is cropped with only the
centered 1024 × 1024 pixels of upscaled version preserved.
The possible values of QF1 and QF2 are taken from the
same set {100, 90, . . . , 40}. The resulted testing image sets
have many subsets, denoted as G{i, j, k}. The variables i, j, and
k refer to different parameters of QF1, λ, and QF2, respec-
tively. For example, G{1, 13, 7} have 500 tampered images
(1024 × 1024 pixels), which suffer from upscaling with a fac-
tor of 2.5 and kernel of bicubic, and double-JPEG with QF1
of 100 and QF2 of 40. Finally, the test image sets include
318 500 images.

The proposed method is compared with the algorithm
from [17] [22], and [24]–[27], with the default parame-
ters mentioned in referring research. The one from [24] has
three versions as “estimated,” “prior,” and “oracle.” Since the
proposed method is a blind estimation method of upscaling
factor without any prior information of λ, only the “estimated”
one of [24] is considered. To present the performance com-
prehensively, we take the performance in terms of the mean
absolute error (MAE) and accuracy as criterion [26], [27]. The
values of MAE and accuracy are calculated over each sub-
sets G{i, j, k}, resulting in a 3-D performance table E{i, j, k}
including 637 elements.

This performance table is too big to be showed in the text;
hence, it is processed by two kinds of data dimensionality
reduction method. The first method is the “drill-up” opera-
tion, where E{i, j, k} is averaged over any two dimensions,
resulting in three 1-D tables, shown in Figs. 5 and 6. The
second method is the “slicing” operation, which takes into
account only one fixed value of λ, generating a 2-D table.
Here, due to the limitation of this article, we present the sit-
uation of λ = {1.2, 1.5, 2.3} with two algorithms [24], [25],
which are most relevant to the research scenario, that is, JPEG-
resampling-JPEG operation chain, shown in Tables II–IV,
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(a) (b) (c)

Fig. 6. Performance in terms of the accuracy for upscaling factor estimation with different variables. (a) λ, averaged over all QF1 and QF2. (b) QF1,
averaged over all QF2 and λ. (c) QF2, averaged over all QF1 and λ.

TABLE II
PERFORMANCE IN TERMS OF THE MAE FOR UPSCALING FACTOR

ESTIMATION. THE UPSCALING FACTOR IS 1.2

TABLE III
PERFORMANCE IN TERMS OF THE MAE FOR UPSCALING FACTOR

ESTIMATION. THE UPSCALING FACTOR IS 1.5

respectively. In each subset G{i, j, k}, the best result between
three methods is marked in boldface.

Figs. 5 and 6 show the MAE and accuracy performance
of several resampling factor estimation methods for varying
parameters. As is shown in Fig. 5, the proposed method
has better performance than other six methods in almost
all situations and dimensions. First, the performance of the
proposed method is robust with respect to different tamper-
ing parameters, which implies that the scaling peaks ω

(1)
rs are

the most robust feature when the inspector has no more prior

TABLE IV
PERFORMANCE IN TERMS OF THE MAE FOR UPSCALING FACTOR

ESTIMATION. THE UPSCALING FACTOR IS 2.3

information. Second, the influence on the proposed method
caused by QF1 and QF2 resembles the way QF1 and QF2
influence [24]–[26]. To be specific, when QF1 decreases,
the performance is getting better. When QF2 decreases, the
performance is getting worse. These methods rely on the fea-
ture of shifted JPEG peaks in the spectrum, which is caused
by the pre-JPEG compression and would be weakened by
the post-JPEG compression. While [22] is on the contrary,
the performance of [22] increases as QF1 increases, and
his performance degrades as QF2 increases. This is because
his method bases on the location of ω

(i)
jp-rs-mix. When QF1

decreases, the amplitude of shifted JPEG peaks increases,
which means there are more noise peaks occurring in the spec-
trum, interfering the detection of resampling-JPEG mixture
peaks. In the meanwhile, when QF2 increases, the JPEG block
artifacts degrade, which weakens the amplitude of JPEG peaks
and resampling-JPEG peaks. In this case, the performance
of [22] gets worse. Besides, the performances of [27] and [17]
are relatively stable whatever QF1 and QF2 are. This is
because [17] is a CNN-based method, which is robust to JPEG
compression, and [27] first denoises the investigated image
to eliminate JPEG peaks while maintaining the resampling
peaks only. Later, he divides the denoised image into several
patches to estimate individually and produces final estimation
in terms of each estimation in patch, which decreases the influ-
ence caused by noise and JPEG peaks, and hence, produces
excellent performance.
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Finally, the performance of [24] and [25] has a nonlinear
relationship with λ. When λ is slightly bigger than 1, the
increase of λ will contribute to the performance. But when
λ is close to or bigger than 2, its increase has a negative influ-
ence on MAE. This puzzling phenomenon can be explained
in two aspects. On the one hand, these two methods rely on
the first shifted JPEG peak ω

(1)
sfjp = 1/8λ, whose amplitude

has a positive relationship with λ. The increase of λ would
strengthen the significance of ω

(1)
sfjp, hence helping for estima-

tion. On the other hand, the amplitude of JPEG-scaling-mixing
peaks ω

(i)
jp-rs-mix also has a positive relationship with λ. One of

ω
(i)
jp-rs-mix is located in the frequency interval [0, 1/8], which is

easily confused with ω
(1)
sfjp. When λ is slightly bigger than 1,

the amplitude of ω
(i)
jp-rs-mix is quite small and the confusion is

negligible. With the increase of λ, ω
(i)
jp-rs-mix is more prominent;

hence, the confusion between it and ω
(1)
sfjp will become stronger

and make the estimation error increase. Since the proposed
method has considered all kinds of peaks in the spectrum, its
performance is more robust to λ.

VI. CONCLUSION

In this article, we addressed the upscaling factor estimation
of double-JPEG compressed images in the presence of image
upscaling between the two compressions. We first highlighted
the complicated spectrum structure of upscaled double-JPEG
images, which is caused by the coupling effect between upscal-
ing and double JPEG compressions. Specifically, we presented
that there are five kinds of characteristic peaks in the spec-
trum, along with the exact formulation of frequencies derived
from a simplified model of BDCT domain quantization. The
proposed theory is verified by the simulation based on the
AR(1) model of untampered images, which also shows the
nondeterminacy for the relative amplitude of different peaks,
influenced by image contents and tampering parameters. The
confusion among different characteristic peaks makes it hard
to estimate the factor only by the peaks location information.
Inspired by the research of nonaligned double JPEG compres-
sion, the problem was then analyzed in the BDCT domain.
We proved that the unique estimation of the upscaling factor
can be obtained in the BDCT domain with a proposed joint-
domain fusion estimation method. The experimental results
have demonstrated that the proposed method outperforms
the state-of-the-art methods reported in the current literature.
However, in the case of strong post-JPEG compression and
slight upscaling, the performance of the proposed method
could be improved further. Therefore, our further research will
try to integrate the supervised learning method and develop a
more robust estimator for upscaled double-JPEG images.
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