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Abstract—JPEG-domain enhancement improves the visual
quality of JPEG images by directly manipulating the decoded
DCT (discrete cosine transform) coefficients, which inevitably
leads to mixed compression and enhancement artifacts. Exist-
ing forensic methods that merely consider JPEG artifacts are
unsuitable to address such mixed artifacts and hence suffer
a considerable performance decline in compression parameter
estimation and lack the ability to estimate the enhancement
parameter. This work attempts to explore the characterization of
the mixed artifacts, and to further estimate both the enhancement
and compression parameters of JPEG-domain enhanced images.
First, a statistical likelihood function is proposed to characterize
the periodicity of DCT coefficients, which can measure how well
an enhanced image is de-enhanced back to its JPEG compressed
version given the compression and enhancement parameters.
The proposed likelihood function reaches its maximum if the
parameters match their true values. Then, a forensic method of
enhancement detection and parameter estimation is developed
based on the proposed likelihood function for two kinds of
classical JPEG-domain enhancement. Specifically, JPEG-domain
enhanced images are detected by thresholding a scalar feature
computed upon the likelihoods, and the enhancement and com-
pression parameters are estimated by locating the maximal like-
lihood. In addition, mathematical proof of the de-enhancement
feasibility is provided. Experimental results demonstrate that the
proposed method outperforms the compared methods in both
enhancement detection and parameter estimation.

Index Terms—image forensics, coefficient periodicity analysis,
JPEG-domain enhancement, maximum likelihood estimation,
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quantization step estimation

I. INTRODUCTION

RECENT years have witnessed massive growth in the
volume of digital images due to the prevalence of

acquisition devices and social networks. In the meantime,
the increasing availability of sophisticated editing software
has enabled us to retouch or alter an image without leav-
ing notable visual traces. Such manipulated images in near-
photographic quality can be used for malicious intent such as
discrediting government authority, misleading public opinion
or disparaging personal reputation. As a promising technology
for authenticating the trustworthiness of digital images, image
forensics [1, 2] has achieved substantial progress over the past
decades.

One of the main tasks in image forensics is to detect
whether an image has been processed by a given operation
and further estimate the used parameter if possible. In the
literature, considerable attention has been paid to the forensic
analysis of resampled images [3–5], filtered images [6, 7],
sharpened images [8], geometrically transformed images [9],
seam carved images [10], inpainted images [11], and etc. With
the popularization of JPEG compression, considerable effort
has been devoted to the forensic analysis of images that have
undergone JPEG compression once [12–20], twice [21–24] or
multiple times [25–27].

This paper focuses on the forensic analysis of images that
have undergone JPEG-domain enhancement. As the name
implies, JPEG-domain enhancement is specially devised to
enhance a JPEG image by directly manipulating its discrete
cosine transform (DCT) coefficients so that the manipulated
coefficients can yield a pixel matrix with improved contrast.
This manner of enhancement can leverage the coefficient
sparsity and frequency structures naturally available in a JPEG
image, which brings some advantages such as low computa-
tional cost and good adaptability to the frequency response
of the human visual system. In the literature, numerous works
have focused on proposing diverse methods [28–33] for JPEG-
domain enhancement; however, little attention has been paid
to the forensic analysis of JPEG-domain enhancement.

Forensic analysis of JPEG-domain enhancement includes
two aspects: enhancement detection and parameter estimation.
Enhancement detection is to detect whether a given image
has been enhanced by a specific JPEG-domain enhance-
ment method, and parameter estimation is to estimate both
the enhancement and compression parameters of a detected
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enhanced image. Addressing these forensic concerns is of
great interest to many applications [1, 2]. Taking tampering
localization as an example, by detecting the presence of
enhancement and estimating the used parameters block by
block over a suspected image, any inconsistency in either the
detected or estimated results can be visualized to reveal the
possible tampered region(s). In general, parameter estimation
is a task more difficult than enhancement detection, as shown
in Section IV. Therefore, the following pays more attention to
the parameter estimation of JPEG-domain enhancement.

A JPEG-domain enhanced image is an image (pixel matrix)
that has undergone JPEG compression followed by JPEG-
domain enhancement, of which both the compression and
enhancement parameters are unknown and need to be esti-
mated. The enhancement operation introduces enhancement
artifacts that disturb the intrinsic JPEG artifacts, causing both
artifacts to be mixed. A straightforward strategy to analyze
such mixed artifacts is to regard enhancement artifacts as
a kind of noise, so a JPEG-domain enhanced image can
be regarded as a JPEG decompressed image contaminated
with enhancement artifacts. This strategy suggests that it
seems feasible to estimate the compression parameter of
JPEG-domain enhanced images by directly using the existing
methods originally designed for JPEG decompressed images
[12–20], despite neglecting the estimation of the enhancement
parameter. However, in practice, the influence of enhancement
artifacts is far beyond the resistibility of the existing methods,
making their performance decline dramatically when dealing
with JPEG-domain enhanced images, as will be reported in
Section V. Moreover, the existing methods lack the ability to
estimate the enhancement parameter.

In this work, we explore the characterization of the mixed
artifacts, and make a preliminary attempt to detect JPEG-
domain enhanced images and estimate their parameters. Some
beneficial results are achieved in this unaddressed direction in
image forensics. The main contributions are summarized as
follows.
• A generic likelihood function with respect to the en-

hancement and compression parameters is proposed to
characterize the periodicity of coefficients de-enhanced
from a JPEG-domain enhanced image. The proposed
function reaches its maximum if its parameters match
the true values. This property is the key to the forensic
analysis of JPEG-domain enhancement.

• A forensic method is developed based on the proposed
likelihood function for two classical JPEG-domain en-
hancement methods (one is non-recursive and the other is
recursive). The de-enhancement feasibility of these two
enhancement methods is also mathematically analyzed.
The presence of enhancement is detected by thresholding
a scalar feature computed upon the likelihoods, while the
enhancement and compression parameters are estimated
by locating the maximal likelihood.

• Experimental results under various settings are provided
to validate the effectiveness of the proposed forensic
method in both enhancement detection and parameter es-
timation, demonstrating its superiority over the compared
methods.

The rest of the paper is structured as follows. Section II
briefly reviews the related works. Section III elaborates on
the proposed likelihood function, and Section IV details the
developed forensic method for two classical methods of JPEG-
domain enhancement. Experimental results are reported and
discussed in Section V, followed by conclusions drawn in
Section VI.

II. RELATED WORK

In this section, we briefly review related works on two
aspects: 1) JPEG-domain enhancement and 2) quantization
step estimation of JPEG decompressed images.

A. JPEG-domain Enhancement

JPEG-domain enhancement emerged almost as early as
the release of JPEG compression. Aghagolzadeh et al. [28]
proposed alpha-rooting to enhance JPEG image contrast by
raising the DCT coefficient magnitude to a power alpha, while
keeping the coefficient sign unchanged. Konstantinides et al.
[29] proposed to sharpen a JPEG image by scaling its quantiza-
tion table with a matrix of scaling factors, at the cost of only
64 additional multiplications regardless of image resolution.
Unlike the former two methods that performed enhancement
without explicitly defining a contrast measure, Tang et al. [30]
first defined a contrast measure in a band-wise manner and
then used it to control the strength of quantization table scal-
ing. Another band-wise contrast measure was proposed in [31],
which was further employed to develop a recursive method
that can achieve primitive multiscale enhancement. Lee [32]
separated each DCT coefficient into two components (namely
illumination and reflectance) based on the retinex theory, sub-
sequently modified them in different ways and finally perform
element-wise product of the two modified components to yield
the enhanced coefficient. Mukherjee and Mitra [33] proposed
to enhance color JPEG images by nonlinearly mapping DCT
coefficients while avoiding pixel value overflow and color
distortion. A variant of the previous enhancement method was
proposed in [34]. The common advantages shared by these
representative methods of JPEG-domain enhancement are their
relatively low computational cost and storage requirement,
which make them suitable for resource-constrained scenarios.
With recent progress in DCT acceleration and optimization
[35–37], JPEG-domain enhancement as well as other JPEG-
domain operations [38–40] can be implemented with much
higher efficiency.

B. Quantization Step Estimation of JPEG Decompressed Im-
ages

A number of works [12–20] has contributed to estimating
the quantization steps of JPEG decompressed images, which
are unavailable after decompression but useful in many ap-
plications such as blocking removal and forgery detection.
Fridrich et al. [12] proposed a “compatibility” function to
measure the degree of a tested step as the true step, and the
one with best “compatibility” was taken as the step estimate.
Fan et al. [13] devised a likelihood model by assuming a
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Laplacian distribution on raw DCT coefficients and yielded
the step estimate based on maximum likelihood principle.
Neelamani et al. [14] extended the method [13] to color
images by further considering the influence of color space
transform and interpolation. After observing the relationship
between the quantization step and the periodicity of the
coefficient distribution, Ye et al. [15] proposed a simple yet
effective estimation method by counting the local peaks in
the power spectrum of the coefficient histogram. Lin et al.
[17] improved upon the method [15] by classifying the energy
density spectra of coefficient histograms into four types and
designing estimation rules for each type. A mathematical
analysis of JPEG errors was conducted by Luo et al. in [16],
where the authors also demonstrated the applications of the
error analysis to detect decompressed bitmaps and estimate the
quantization steps. Li et al. [18] deepened the analysis of JPEG
errors in consecutive compression and proposed a statistic-
sufficient estimator to overcome the technical defects of [12].
Recently, Thai et al. [19] proposed a sophisticated method for
step estimation by modeling the quantized alternating current
(AC) DCT coefficient under the assumption of a doubly
stochastic distribution instead of a Laplacian [13, 16, 18] or
truncated Gaussian [14] distribution. Yang et al. [20] proposed
a clustering-based framework to alleviate the insufficiency
of coefficients by collecting as many coefficients as possible
before step estimation, which helps to improve the estimation
performance of the existing methods, especially for small-size
images.

These forensic methods were originally proposed for JPEG
decompressed images, which merely considered compression
artifacts. Directly applying these methods to address JPEG-
domain enhanced images will lead to two limitations. First,
they suffer a performance decline in compression parameter
estimation due to their weak resistibility against the interfer-
ence caused by enhancement artifacts. Second, they lack the
ability to estimate the enhancement parameter.

III. PROPOSED LIKELIHOOD FUNCTION

This section first presents the basic idea for characterizing
the mixed artifacts caused by JPEG-domain enhancement, then
derives the de-enhanced coefficient distribution for likelihood
modeling, and finally details the construction of the proposed
likelihood function. The main notations used in this section
are summarized in Table I.

A. Basic Idea

The procedure of (lossy) JPEG compression consists of
three main operations, namely block-wise DCT, coefficient
quantization and entropy encoding, where coefficient quan-
tization serves to approximate continuous coefficients with
discrete ones to reduce the bits required. Let C and D denote
the whole coefficient matrixes before and after quantization.
The elements of C and D at the spatial frequency (i, j) of
the k-th 8× 8 DCT block are respectively denoted by ckij and

TABLE I
NOTATIONS

C Unquantized DCT coefficient matrix
D Dequantized DCT coefficient matrix
ckij Element of C at frequency (i, j) of the k-th block
dkij Element of D at frequency (i, j) of the k-th block
qij Quantization step for frequency (i, j)
λ Enhancement parameter
λ? True value of λ
f(·) Enhancement operator
f−1(·) De-enhancement operator
D̄ Enhanced DCT coefficient matrix

D(λ) DCT coefficient matrix de-enhanced by λ
D? DCT coefficient matrix de-enhanced by λ?

dkij(λ) Element of D(λ) at (i, j) of the k-th block
d?ij Element of D? at frequency (i, j)
PL(·) Quantized Laplacian probability mass function
G(·) Truncated Gaussian probability density function

dkij , 0 ≤ i, j ≤ 7. Quantization is an element-wise operation
that can be formulated by

dkij = round

(
ckij
qij

)
∗ qij , (1)

with round(·) the rounding operator and qij the quantization
step. Unless necessary, the block index k is omitted for
simplicity.

The quantized coefficient matrix D has several attractive
properties for image enhancement. First, D represents an
image from the frequency perspective, which provides a con-
venient way to adapt the frequency response characteristics of
the human visual system. Second, D is commonly sparser (i.e.,
has more zero-valued coefficients) than C, which provides a
possibility to reduce the computational cost of enhancement.

To take advantage of these properties, JPEG-domain en-
hancement directly manipulates the coefficients D of a JPEG
image and then inversely transforms the manipulated coef-
ficients to yield an image with enhanced contrast. Let D̄
denote the coefficient matrix after enhancement. In general,
JPEG-domain enhancement can be formulated as a parametric
mapping f(·, λ) from D to D̄:

D̄ = f(D, λ), (2)

with λ the enhancement parameter. Different JPEG-domain en-
hancement methods can be regarded as different enhancement
mappings.

For forensics analyzers, only the enhanced coefficient ma-
trix D̄ is observable. The diversity of enhancement mapping f
makes it challenging to directly model the characteristics of D̄.
We recognize that regardless of the enhancement methods, D̄
is always enhanced from the quantized coefficient matrix D,
which exhibits periodicity in coefficient distribution [2]. If D̄
can be mapped back to D by a de-enhancement operation, the
statistical modeling of JPEG-domain enhanced coefficients can
be transformed into the periodicity modeling of de-enhanced
coefficients, which could be more easily solved. This is the
basic idea behind the proposed likelihood function in the
following.
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B. De-enhanced Coefficient Distribution

Denote the de-enhancement operator by f−1(·, λ). Using
the correct enhancement parameter λ? to de-enhance D̄ can
eliminate the influence of enhancement and yield

D? = f−1(D̄, λ?). (3)

In the ideal situation, D? should be equal to D, whose
coefficients from any individual frequency should distribute
exactly at mqij ,m ∈ Z, the multiples of the quantization
step. However, in practical situations, D̄ contains some minor
noise caused by pixel rounding, making the coefficients in D?

deviate from mqij and distribute around it. Let d?ij denote the
de-enhanced coefficient from the AC frequency (i, j) of D?.
The probability density of d?ij can be given by

p
(
d?ij ; qij

)
=
∑
m∈Z

PL(mqij)G
(
d?ij −mqij

)
, (4)

where PL(·) is the quantized Laplacian probability mass
function (PMF) that characterizes the probability of coefficient
falling at mqij in the ideal noiseless situation, and G(·) is
the truncated Gaussian probability density function (PDF) that
characterizes the influence of rounding noise, which causes the
coefficient deviate from mqij to some extent.

It is worth noting that the quantized Laplacian PMF is
not the only option for characterizing quantized coefficients.
Another PMF for quantized coefficients can be derived based
on a doubly stochastic model, as proposed in [19]. However,
Such a PMF has two extra distribution parameters, which
additionally increases the complexity of the likelihood function
for estimating the enhancement and compression parameters.
In contrast, the quantized Laplacian PMF has only one distri-
bution parameter and is thus preferable.

Specifically, PL(·) has the form [13, 14, 18]:

PL(x) =

∫ x+0.5qij

x−0.5qij

1

2ρij
exp

(
− |u|
ρij

)
du, (5)

with ρij the scale parameter of the Laplacian PDF being
integrated, which can be estimated according to [14]. G(·)
is the zero-mean truncated Gaussian PDF [13]:

G(x) =

{
1
Z exp

(
− x2

2σ2

)
if |x| ≤ B

0 else
, (6)

where σ2 is the variance of rounding noise and takes the value
of 1/12 according to [13, 16], B is the bound of rounding
noise and set to 4 according to [13], and Z is the scalar that
normalizes the integration of G(x) over the range [−B,B] to
1, which can be calculated by

Z =

∫ B

−B

1√
2πσ

exp

(
− x2

2σ2

)
dx. (7)

For σ2 = 1/12, B = 4, we have Z ≈ 1−2.5979×10−14 ≈ 1.

C. Likelihood Function Construction

With the distribution of de-enhanced coefficients given by
Eq. (4), we can construct the likelihood function for estimating
the enhancement parameter λ and compression parameter qij .

Given an enhanced coefficient matrix D̄, using different λ
to de-enhance it will yield different de-enhanced coefficient
matrix D(λ) = f−1(D̄, λ). Let dkij(λ) denote the coefficients
from the frequency (i, j) of D(λ), with k the index of 8 ×
8 DCT blocks, 1 ≤ k ≤ K. For each frequency (i, j), a
likelihood function with respect to enhancement parameter λ
and quantization step qij can be defined by

Lij(λ, qij) ,
1

K

K∑
k=1

log
(
p
(
dkij(λ); qij

))
. (8)

The subscript ij in Lij means that Lij differs from frequency
to frequency since the scale parameter ρij in Eq. (5) depends
on frequency. The sum of the likelihood values is normalized
by the total number K of blocks to adapt preprocessing such
as truncated/monotone block exclusion.

The true enhancement parameter should maximize Lij for
every frequency (i, j) and thus also maximize their sum over
all frequencies of interest, which is given by

L(λ) ,
∑

(i,j)∈F

max
1≤qij≤qB

Lij(λ, qij), λ ∈ C, (9)

where F is the set of spatial frequencies (i, j) of interest, qB
is the upper bound of the quantization step, and C is the set
of candidate enhancement parameters. The settings of F , qB
and C are discussed in Section IV.

Therefore, the estimate of the enhancement parameter, de-
noted by λ̂, can be obtained by

λ̂ = arg max
λ∈C

L(λ). (10)

With the estimated λ̂, the estimate of the quantization step
for each (i, j), denoted by q̂ij , can be obtained by

q̂ij = arg max
1≤qij≤qB

Lij(λ̂, qij). (11)

The enhancement parameter λ affects all frequencies, so
it is estimated by the overall likelihood function L(λ) that
simultaneously considers multiple frequencies. In contrast, the
quantization step qij only affects a single frequency (i, j),
so it is estimated by the frequency-wise likelihood function
Lij(λ, qij).

At the end of this subsection, we briefly discuss the general-
ization of the proposed likelihood function. As presented, the
above likelihood function is constructed based on the prerequi-
site that a given enhancement method has its de-enhancement
operation. De-enhancement can be regarded as the reverse
of enhancement. If an image operation has its corresponding
reverse operation, the proposed likelihood function has the
potential to forensically analyze images that have undergone
JPEG compression followed by that operation. For example,
if a JPEG image is gamma-corrected, the proposed likelihood
function might be able to address the gamma-corrected image
since gamma correction is reversible. Many traditional image
operations such as resampling and convolutional filtering are
reversible. We believe the proposed likelihood function is also
applicable to these operations with necessary modification.
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IV. PROPOSED FORENSIC METHOD FOR JPEG-DOMAIN
ENHANCEMENT

In this section, we demonstrate the application of the
proposed likelihood function to the forensic analysis of two
classical methods of JPEG-domain enhancement, including:

• A non-recursive enhancement method proposed in [30].
This method weights the DCT coefficients by an en-
hancement factor for each frequency band independently
in pursuit of real-time response and convenient use for
people with vision impairment, who commonly need to
adjust the contrast of an image interactively to meet their
visual preference.

• A recursive enhancement method proposed in [31]. This
method weights the DCT coefficients in a frequency
band not only by the enhancement factor but also by the
coefficients in previous frequency bands. Such a recursive
manner helps to dynamically adjust the enhancement
strength for each band at the cost of additional computa-
tion compared to [30].

The two classical methods of JPEG-domain enhancement
have inspired many later proposed methods and usually serve
as a benchmark for comparison. Their de-enhancement can be
mathematically proven, which guarantees the applicability of
the proposed likelihood function.

In the following, we first analyze the de-enhancement of the
two enhancement methods and the difference between them,
and then detail the proposed forensic method that can realize
enhancement detection and parameter estimation in a unified
framework.

A. De-enhancement Analysis

1) De-enhancement Analysis of the Method [30]: Similar
to the notations used in Section III, let fnr(·, λnr) denote
the non-recursive JPEG-domain enhancement with λnr the
enhancement parameter. Enhancing a given coefficient dij with
fnr(·, λnr) will yield

d̄ij = fnr(dij , λnr) = λi+jnr dij . (12)

According to Eq. (12), the enhancement procedure can be
briefly described as follows: divide an 8×8 DCT block into 15
different frequency bands, as shown in Fig. 1, and weight the
coefficients in the t-th band by a factor of λtnr. For example,
the coefficients in the 0-th band are weighted by λ0

nr = 1,
while those in the 3-rd band are weighted by λ3

nr.
Obviously, the de-enhancement operator f−1

nr (·, λnr) is the
reverse function of fnr(·, λnr):

f−1
nr (d̄ij , λnr) = dij =

(
1

λnr

)i+j
d̄ij = fnr

(
d̄ij ,

1

λnr

)
.

(13)
Eq. (13) reveals a concise connection between the de-

enhancement and enhancement of the non-recursive method:
de-enhancement can be performed by enhancing the already
enhanced coefficients with the reciprocal of the enhancement
parameter.

 𝑑00  𝑑01  𝑑02  𝑑03  𝑑04  𝑑05  𝑑06  𝑑07

 𝑑10  𝑑11  𝑑12  𝑑13  𝑑14  𝑑15  𝑑16  𝑑17

 𝑑20  𝑑21  𝑑22  𝑑23  𝑑24  𝑑25  𝑑26  𝑑27

 𝑑30  𝑑31  𝑑32  𝑑33  𝑑34  𝑑35  𝑑36  𝑑37

 𝑑40  𝑑41  𝑑42  𝑑43  𝑑44  𝑑45  𝑑46  𝑑47

 𝑑50  𝑑51  𝑑52  𝑑53  𝑑54  𝑑55  𝑑56  𝑑57

 𝑑60  𝑑61  𝑑62  𝑑63  𝑑64  𝑑65  𝑑66  𝑑67

 𝑑70  𝑑71  𝑑72  𝑑73  𝑑74  𝑑75  𝑑76  𝑑77

0th band 3rd band

9th band

Fig. 1. Frequency band structure in the non-recursive [30] and the recursive
[31] enhancement.

2) De-enhancement Analysis of the Method [31]: The
recursive enhancement method also manipulates the DCT
coefficients in a band-wise manner, as shown in Fig. 1. Let
fr(·, λr) denote the recursive enhancement operator with λr
the enhancement parameter. Enhancing a given coefficient dij
with fr(·, λr) will produce

d̄ij = fr(dij , λr) =

{
dij , i+ j = 0

λrHi+jdij , i+ j > 0
, (14)

where

Hτ =

∑τ−1
t=0 Ēt∑τ−1
t=0 Et

. (15)

Et and Ēt denote before and after enhancement, respectively,
the averaged coefficient magnitude at band t:

Et =
1

Nt

∑
i+j=t

|dij |, (16)

where Nt is the number of frequencies at band t.

The term Hi+j in Eq. (14) differs not only from band to
band but also from block to block. It is computed recursively,
and thus, this method is termed “recursive” JPEG-domain
enhancement. For more details please refer to [31].

Interestingly, the de-enhancement operator f−1
r (·, λr) of the

recursive enhancement has a similar form as that of the non-
recursive enhancement:

f−1
r (d̄ij , λr) = fr

(
d̄ij ,

1

λr

)
(17)

Eq. (17) can be proven by mathematical induction as
follows:

Let d′ij = fr

(
d̄ij ,

1
λr

)
and dij = f−1

r (d̄ij , λr) (the
definition of de-enhancement), our goal is to prove d′ij = dij
for all (i, j). The proof includes three steps:

1) For i+ j = 0, d′ij = d̄ij = dij since the DC coefficient
is kept unchanged according to Eq. (14).
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2) For i+ j = 1,

d′ij =
1

λr
H̄i+j d̄ij

=
1

λr
H̄i+j (λrHi+jdij)

= H̄1H1dij =
|d′00|
|d̄00|

|d̄00|
|d00|

dij = dij .

(18)

In addition, we have

H̄2H2 =

∑1
t=0 Ē

′
t∑1

t=0 Ēt
·
∑1
t=0 Ēt∑1
t=0Et

=

∑1
t=0 Ē

′
t∑1

t=0Et

=
|d′00|+ |d′01|+ |d′10|
|d00|+ |d01|+ |d10|

= 1.

(19)

3) For i+j = n ≥ 1, assume d′ij = dij holds. Accordingly,
H̄n+1Hn+1 = 1 also holds. Then, for i+ j = n+ 1, we
have

d′ij =
1

λr
H̄i+j d̄ij

=
1

λr
H̄i+j (λrHi+jdij)

= H̄n+1Hn+1dij = dij .

(20)

By combining the above three steps, we finally arrive at d′ij =
dij for all (i, j) and complete the proof of Eq. (17).

3) Analysis of Difference Between the Two Methods: The
two enhancement methods mainly differ in the manner of
coefficient weighting. That is, the non-recursive enhancement
weights DCT coefficient dij with λi+jnr , whereas the recursive
enhancement weights it with λrHi+j , as expressed in Eq. (12)
and Eq. (14). When λnr = λr = λ, the following relationships
always hold: {

λi+j ≥ λHi+j ≥ 1, λ > 1

λi+j ≤ λHi+j ≤ 1, λ < 1
, (21)

which means that the non-recursive enhancement changes the
coefficient more heavily than the recursive enhancement under
the same enhancement parameter.

Eq. (21) can be proven by mathematical induction as
follows:

According to the definition of Hi+j in Eq. (15), λ > 1
leads to Hi+j ≥ 1 and then λHi+j ≥ 1. Similarly, λ < 1
leads to Hi+j ≤ 1 and then λHi+j ≤ 1. Hence, the remaining
is to prove the relationship between λi+j and λHi+j , which
includes three steps:

1) For i + j = 1, we have λH1 = λ |d̄00||d00| = λ1, so Eq.
(21) holds. In addition, we have Ē0 = E0 and Ē1 =
λH1E1 = λE1.

2) For i+ j = 2, we have

λH2 = λ

∑1
t=0 Ēt∑1
t=0Et

= λ
Ē0 + Ē1

E0 + E1

= λ
E0 + λE1 + λE0 − λE0

E0 + E1

= λ

[
λ+ (1− λ)

E0

E0 + E1

]
.

(22)

Both E0 and E1 are non-negative, so 0 ≤ E0

E0+E1
≤ 1.

It can be discussed in two cases:
• If λ > 1, then (1− λ) < 0, so λ ≤ λH2 ≤ λ2.
• If λ < 1, then (1− λ) > 0, so λ2 ≤ λH2 ≤ λ.

Combining the two cases, Eq. (21) holds for i+ j = 2.
In addition, we further have{

Ē2 = λH2E2 ≤ λ2E2, λ > 1

Ē2 = λH2E2 ≥ λ2E2, λ < 1
. (23)

3) For i + j = n ≥ 2, assume Eq. (21) holds. We
accordingly have{

Ēn = λHnEn ≤ λnEn, λ > 1

Ēn = λHnEN ≥ λnEn, λ < 1
. (24)

Then, for i+ j = n+ 1, we can rewrite λHn+1 as

λHn+1 = λ

∑n
t=0 Ēt∑n
t=0Et

= λ

∑n−1
t=0 Ēt + Ēn∑n−1
t=0 Et + En

= λ

∑n−1
t=0 Ēt + Ēn + λn

∑n−1
t=0 Et − λn

∑n−1
t=0 Et∑n−1

t=0 Et + En

= λ

[
Ēn + λn

∑n−1
t=0 Et∑n−1

t=0 Et + En
+

∑n−1
t=0 (Ēt − λnEt)∑n−1
t=0 Et + En

]
, λ(A+B).

(25)
Similarly, it can be discussed in two cases:
• If λ > 1, then A ≤ λn and B ≤ 0 according to Eq.

(24), so λHn+1 = λ(A+B) ≤ λ(λn + 0) = λn+1.
• If λ < 1, then A ≥ λn and B ≥ 0 according to Eq.

(24), so λHn+1 = λ(A+B) ≥ λ(λn + 0) = λn+1.
Therefore, Eq. (21) holds for i + j = n + 1 if it holds
for i+ j = n.

By combining all three steps, we finally complete the proof
of Eq. (21) via mathematical induction.

To illustrate the above analysis, Fig. 2 gives the distri-
bution of λHi+j and the value of λi+j for the frequency
(i, j) = (2, 2). Each distribution contains 6690 samples,
which are generated by JPEG compressing the 1338 UCID
images with QF ∈ {50, 60, 70, 80, 90} and then enhancing
the resulting JPEG images with λ1 = 0.8 and λ2 = 1.2.
For λ1 = 0.8 < 1, the recursive enhancement weights the
coefficients with λ1H2+2 (the blue bins), while the non-
recursive enhancement weights the coefficients with a fixed
value of λ2+2

1 = 0.4096 (the blue dashed line). Obviously,
λ2+2

1 ≤ λ1H2+2 < 1, which implies that the recursive
enhancement weights the coefficients more mildly and thus
causes less change to the coefficients than the non-recursive
enhancement. Similarly, for λ2 = 1.2 > 1, we can observe
λ2+2

1 ≥ λ1H2+2 > 1, also indicating that the recursive
enhancement weights coefficients more mildly.

Fig. 3 further shows the mean squares of coefficients varying
with different enhancement parameters λ for the two enhance-
ment methods, which are computed from 6690 images by
excluding monotone and saturated blocks. Generally, a large
mean square implies that a high proportion of large coefficients
are available for forensic analysis. Two observations can be
obtained. First, the mean square decreases when λ increases or
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Fig. 2. Distribution of weights for the non-recursive [30] and the recursive
[31] enhancement.
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Fig. 3. Mean squares of coefficients for the non-recursive [30] and the
recursive [31] enhancement.

decreases away from 1, and the decreasing is faster when λ <
1 than when λ > 1. This can be explained as follows. When
λ > 1, a larger λ leads to more saturated blocks but meanwhile
larger coefficients, which can compensate each other and
slow down the decreasing of the mean square. In contrast,
when λ < 1, a smaller λ leads to not only more monotone
blocks but also smaller coefficients, which together decrease
the mean square and make the decreasing faster. Second, the
mean square of coefficients for the recursive enhancement
decreases slower than the non-recursive one, further validating
the above analysis that the recursive enhancement enhances
an image more mildly. In summary, it is expected that the
forensic analysis of the non-recursive enhancement will be
more difficult since fewer/smaller coefficients are available,
especially in the cases of λ < 1.

B. Proposed Forensic Method

With the de-enhancement operators derived above, the pro-
posed likelihood function is ready for enhancement detection
and parameter estimation. For both the non-recursive and the
recursive JPEG-domain enhancement, the following relation-
ship holds:

f(dij , 1) = dij . (26)

Eq. (26) indicates that an original coefficient dij enhanced with
enhancement parameter 1 is equal to itself. In other words, an
original (non-enhanced) image can be regarded as an enhanced
image with enhancement parameter 1. It is interesting to
mention that many traditional image manipulations also have
similar relationships between non-manipulated images and
manipulated images. For instance, a non-resized image can be
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Fig. 4. Curves of the overall likelihood function for different degrees of
enhancement. (a) Non-recursive enhancement with λnr = 0.8; (b) original
image (λnr = 1.0); (c) non-recursive enhancement with λnr = 1.2; (d)–
(f) curves of L (λnr) corresponding to (a)–(c), respectively. (g) Recursive
enhancement with λr = 0.8; (h) original image (λr = 1.0); (i) recursive
enhancement with λr = 1.2; (j)–(l) curves of L (λr) corresponding to (g)–
(i), respectively. The PSNR between (a) and (b) is PSNRa,b = 36.43 dB.
Similarly, PSNRc,b = 32.90 dB, PSNRg,h = 39.62 dB, PSNRi,h =
39.11 dB.

regarded as a resized image with a resizing ratio of 1, or a non-
gamma-corrected image can be viewed as a gamma-corrected
image with a gamma value of 1. Based on the relationship
revealed by Eq. (26), the overall likelihood function L(λ)
proposed in Eq. (9) has the following properties (the subscripts
of λr and λnr are omitted for clarity if unnecessary):
• For an original image, L(λ) is expected to reach its

maximum at 1.
• For an enhanced image, L(λ) should be maximized at

the true value of the enhancement parameter.
To illustrate these properties, the curves of the overall

likelihood function for different degrees of enhancement are
shown in Fig. 4. Only the luminance component of the color
image is enhanced while keeping the chrominance compo-
nents unchanged. For the non-recursive enhancement [30], the
images enhanced with λnr = 0.8 and 1.2 are shown in (a)
and (c), respectively, with the original image shown in (b).
The likelihood curves corresponding to images (a)–(c) are
shown in (d)–(f), respectively. The ranges of the vertical axes
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(likelihood value) in (d)–(f) are kept consistent for convenience
of comparison. Note that enhancing with λnr < 1 will
decrease the sharpness of the edges and textures (such as the
“hair” and “rubble” regions of the sample image) and result in
a relatively smooth image, as shown in (a), whereas enhancing
with λnr > 1 will sharpen these details, as shown in (c). For
the enhanced images (a) and (c), their corresponding likelihood
curves reach the maximum at 0.8 and 1.2, respectively, which
are exactly equal to the truly used enhancement parameter;
for the original image (b), the maximum of its likelihood
curve occurs at 1. Similar observations can be made for
the recursive enhancement [31], as shown in (g)–(l). The
peak signal to noise ratios (PSNRs) between the enhanced
images and the original image are also computed: PSNRa,b =
36.43 dB, PSNRc,b = 32.90 dB, PSNRg,h = 39.62 dB, and
PSNRi,h = 39.11 dB. Note that (a) and (g) are enhanced with
the same value of enhancement parameter (λnr = λr = 0.8),
but PSNRa,b = 36.43 dB < PSNRg,h = 39.62 dB,
which means that the “distortion” caused by the recursive
enhancement is slighter than that caused by the non-recursive
enhancement. Similarly, PSNRc,b = 32.90 dB < PSNRi,h =
39.11 dB for λnr = λr = 1.2. These results imply that
the recursive enhancement is milder than the non-recursive
enhancement, as analyzed in the previous subsection.

Based on these properties, a simple yet effective threshold-
ing detector is proposed to detect the presence of enhancement.
First, a scalar feature s can be defined as:

s , max
λ6=1

L(λ)− L(1). (27)

Then, a given image I is detected to be an original image if
s < 0 since L(1) is the maximum of L(λ); otherwise, it is
detected to be an enhanced image.

Since enhancement detection can be regarded as a classifica-
tion task, another possible solution is to train a binary classifier
that directly takes the likelihood values L(λ) as features.
Such a learning-based approach is promising because it can
make better use of the discriminability of the likelihood values
but has to perform classifier training. In contrast, the above-
proposed thresholding detector is free from training yet highly
effective in enhancement detection as reported in Section V-B.
It is also more intuitive for demonstrating the property of L(λ)
and is thus preferred.

Once I is detected to be an enhanced image, its enhance-
ment parameter can be estimated according to Eq. (10), and
its compression parameter (namely, quantization steps) can be
estimated according to Eq. (11).

In summary, the proposed forensic method for enhancement
detection and parameter estimation is illustrated in Fig. 5 and
described as follows.

1) Given an image I , divide I into non-overlapping 8× 8
blocks and exclude saturated blocks and monotone
blocks. A saturated block is a block containing any
pixel with a value of 0 or 255, while a monotone block
is a block containing pixels with the same value. The
former is contaminated by truncation noise, and the
latter provides little discriminative information, both of
which are unsuitable for likelihood computation and thus

Image 𝐼

Divide 𝐼 into 8×8 blocks and exclude 
saturated blocks and monotone blocks 

Compute feature s according to Eq. (22) 

𝑠 < 0 original 
image

Estimate the enhancement parameter 𝜆
according to Eq. (10) 

𝜆̂

Substitute 𝜆̂ into Eq. (11) to estimate the 
quantization steps 𝑞𝑖𝑗

𝑞�𝑖𝑗

Yes

No

Fig. 5. Flowchart of the proposed forensic method for enhancement detection
and parameter estimation.

excluded.
2) Compute the scalar feature s for enhancement detection

according to Eq. (27).
3) I is detected to be an original (non-enhanced) image if

s < 0; otherwise, it is detected to be an enhanced image.
4) Estimate the enhancement parameter λ according to Eq.

(10) if I is detected to be enhanced.
5) Substitute the estimated enhancement parameter λ̂ into

Eq. (11) to obtain the estimate q̂ij of quantization steps.

It is worth noting that the proposed method works in a
manner similar to hypothesis testing. That is, it first assumes
that the image to be detected has been enhanced and accepts
the assumption if s > 0. The enhancement parameter and com-
pression parameter can be further estimated if the assumption
is accepted.

When implementing the above-proposed method, the
settings of F , qB and C in Eq. (9) are crucial to reproducing
the reported results in Section V. Empirically, we set F =
{(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (3, 0)},
which includes the first nine low frequencies in zigzag order.
Excessively high frequencies are not considered because
they usually do not have sufficient non-zero coefficients to
support a reliable computation of likelihood. We set qB = 25
since 25 is large enough to cover the range of quantization
step corresponding to frequencies in F when QF ≤ 50,
the commonly used range of quality factors for JPEG
compression. The setting of C is slightly different for the two
JPEG-domain enhancement methods. For the non-recursive
enhancement [30], C is set from 0.60 to 2.00 with a step
of 0.05 to cover the commonly used range of enhancement
parameter, namely, C = {0.60, 0.65, · · · , 2.00}; for the
recursive enhancement [31], C = {0.60, 0.65, · · · , 3.30}. As
discussed in Section IV-A3, in contrast to the non-recursive
enhancement, the recursive enhancement weights DCT
coefficients more mildly, and thus can support a wider range
of enhancement parameters.
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V. EXPERIMENTAL EVALUATION

This section first presents the experimental settings and
then reports the performance of the proposed method in
three aspects: enhancement detection, enhancement parameter
estimation, and compression parameter estimation.

A. Experimental Settings

1) Sample Generation: The UCID [41] image set, consist-
ing of 1338 images with a size of 384 × 512 pixels, is used
to generate sample images for evaluation. The UCID images
are JPEG compressed with QF ∈ {50, 60, 70, 80, 90}. These
resulting JPEG images are decompressed to produce a total of
1338 ∗ 5 = 6690 original (non-enhanced) images. Enhanced
images are also generated based on these resulting JPEG im-
ages. For the non-recursive enhancement, these JPEG images
are enhanced with λnr ∈ {0.7 : 0.1 : 0.9, 1.1 : 0.1 : 1.5}
(namely, increasing with a step of 0.1); for the recursive
enhancement, they are enhanced with λr ∈ {0.7 : 0.1 : 0.9,
1.1 : 0.1 : 1.5, 1.6 : 0.2 : 3.0}. As a result, 1338∗5∗8 = 53520
and 1338∗5∗16 = 107040 enhanced image are generated for
the non-recursive and the recursive enhancement, respectively.
Note that both the original and enhanced images are saved
in the lossless image format. Our forensic goal is to detect
the enhanced images and estimate both the enhancement and
compression parameters.

2) Performance Measurement: Detection accuracy, defined
by (true positive rate + true negative rate)/2 ∗ 100%, is used
to quantify the performance of enhancement detection, where
the true positive (negative) rate is the proportion of correctly
detected enhanced (original) images to the total enhanced
(original) images.

Estimation accuracy is used to measure the performance of
parameter estimation, which is defined as the proportion of
correct estimates to the total estimates. Since the enhance-
ment parameter is floating-point-valued and the compression
parameter (quantization step) is integer-valued, their criteria of
“correctness” are slightly different. For enhancement param-
eter estimation, an estimate is considered to be correct if the
absolute difference between the estimate and the true value
is less than a tolerance (0.025 is set in the experiments). For
compression parameter estimation, an estimate is considered
to be correct only if it is exactly equal to the true value. The
estimation accuracy of the quantization step is evaluated over
the first nine spatial frequencies in zigzag order.

3) Compared Methods: Although there is no previous
forensic method directly proposed for JPEG-domain enhance-
ment in the current literature, some methods have the po-
tentiality to partially address the forensics of JPEG-domain
enhancement if properly used, as stated in the following.

For comparison of enhancement detection, three feature
sets are implemented, which are based on edge perpendic-
ular binary coding (EPBC) [42], reduced spatial rich model
(RSRM) [43] and threshold local binary pattern (TLBP) [44],
respectively. These feature sets are good at capturing the
statistical abnormality induced by image operations and are
expected to also be effective for characterizing the mixed
artifacts caused by JPEG-domain enhancement. Half of the

image samples generated above are used to train a binary
ensemble classifier [45] for each feature set, and the other
half are used for testing. When compared with these three
methods, the proposed method are also evaluated on the same
test images for a valid comparison.

For comparison of enhancement parameter estimation, in-
spired by [43], multi-class ensemble classification is imple-
mented for the three feature sets with the one-versus-rest
strategy. By regarding each enhancement parameter as an
individual class, for each of the three feature sets, a nine-
class classifier is trained for the non-recursive enhancement
to estimate λnr from {0.7 : 0.1 : 1.5}, and a seventeen-class
classifier is trained for the recursive enhancement to estimate
λr from {0.7 : 0.1 : 1.5, 1.6 : 0.2 : 3.0}. Note that such a
comparison is somewhat unfair to our proposed method since
our method performs the estimation in a wider range and a
finer grain. All of the multi-class classifiers are trained on
half of the image samples and tested on the other half.

For comparison of compression parameter estimation, five
existing methods are implemented, including Ye et al.’s [15],
Luo et al.’s [16], Lin et al.’s [17], Thai et al.’s [19], and Yang
et al.’s [20]. Since these five methods and the proposed method
are free from training, their performance is tested on all of the
image samples. Note that the compression parameter (namely,
quantization steps) is estimated frequency by frequency. The
above three feature sets are unsuitable for compression param-
eter estimation since they are extracted from the whole image
rather than from an individual frequency.

B. Enhancement Detection

Fig. 6 and 7 show the distributions of the scalar feature
s for detecting the non-recursive and the recursive enhance-
ment, respectively. The s distributions of original images and
enhanced images are plotted in red and blue, respectively.
Each distribution is normalized to sum to 1 for convenient
comparison.

Two observations are obtained. First, the s of either original
or enhanced images show relatively large intra-class variations.
As stated above, original images are generated using different
compression parameters and enhanced images are generated
under various degrees of compression and enhancement. The
diversity of image samples leads to a relatively large variation
in s. Second, the s of original images can be clearly distin-
guished from those of enhanced images. Table II further lists
the true positive rates (TPRs), true negative rates (TNRs) and
detection accuracies (ACCs) under different QFs for the non-
recursive enhancement (NRE) and the recursive enhancement
(RE), respectively. In all test cases, the detection accuracies
of the proposed method are up to 99% or more, indicating the
effectiveness of s in enhancement detection.

Table III reports the detection accuracies achieved by the
compared feature sets and the proposed scale feature. The
RSRM and TLBP feature sets can achieve the accuracies of
90% or higher for all test cases, indicating that these high-
dimensional feature sets have good discriminability for en-
hancement detection. In contrast, the proposed feature is only
one-dimensional but significantly outperforms the compared
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Fig. 6. Distribution of the proposed scalar feature s for detecting the non-
recursive enhancement.
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Fig. 7. Distribution of the proposed scalar feature s for detecting the recursive
enhancement.

TABLE II
PERFORMANCE (%) OF THE PROPOSED FEATURE s IN DETECTING THE
NON-RECURSIVE ENHANCEMENT (NRE) [30] AND THE RECURSIVE

ENHANCEMENT (RE) [31].

QF 50 60 70 80 90

NRE
TPR 100 99.94 99.90 98.05 98.85
TNR 100 100 100 100 99.78
ACC 100 99.97 99.95 99.03 99.31

RE
TPR 100 100 99.98 99.93 99.86
TNR 100 100 100 100 100
ACC 100 100 99.99 99.96 99.93

TABLE III
COMPARISON OF ACCURACIES (%) IN DETECTING THE NON-RECURSIVE
ENHANCEMENT (NRE) [30] AND THE RECURSIVE ENHANCEMENT (RE)

[31].

QF 50 60 70 80 90

NRE

EPBC [42] 86.40 88.02 89.12 89.19 87.66
RSRM [43] 94.94 94.58 95.25 94.62 93.81
TLBP [44] 96.57 96.28 96.45 95.20 96.12
Proposed 100 99.95 99.91 98.87 99.06

RE

EPBC [42] 81.46 81.54 82.41 82.20 81.93
RSRM [43] 95.73 94.31 95.42 93.09 91.93
TLBP [44] 94.64 93.07 92.66 92.69 90.45
Proposed 100 100 99.98 99.92 99.90

feature sets, validating its high efficiency in capturing the
artifacts caused by JPEG-domain enhancement.

C. Enhancement Parameter Estimation

Table IV and Table V show the estimation accuracies of
the enhancement parameter for the non-recursive and the
recursive enhancement, respectively. More cases are tested
for the recursive enhancement since it enhances images more
mildly than the non-recursive enhancement, and thus supports
a wider range of enhancement parameters. Recall the discus-
sion in Section IV-B that an original image is equivalent to an
enhanced image with an enhancement parameter of 1. There-
fore, the estimation accuracies of enhancement parameter on
original images are also given in the rows “1.0” of the two
tables. The estimation accuracies are beyond 95% in most
test cases, indicating the proposed method can be applicable
to a variety of combinations of enhancement parameters and
compression parameters.

Two phenomena can be observed in Tables IV and V. First,
the estimation accuracies for the recursive enhancement are
higher than those for the non-recursive enhancement. Second,
for a fixed QF, the accuracy mostly achieves its maximum at
row “1.0” and then gradually decreases with either a decrease
or increase in the enhancement parameter. As analyzed in
Section IV-A3, the recursive enhancement weights coefficients
more mildly so that the coefficients available for estimation
are more sufficient, which helps to achieve better accuracies.
Fig. 3 gives a more intuitive interpretation. The curve of the
coefficient mean square for the non-recursive enhancement is
always below that for the recursive enhancement, implying
that fewer/smaller coefficients are available for the parameter
estimation of the non-recursive enhancement. Moreover, both
curves decrease more rapidly when λ < 1 than when λ > 1.
When λ reaches 0.7, the mean square for the non-recursive
enhancement has already decreased to a very low level, as
shown in Fig. 3. So the corresponding estimation accuracies
in Table IV are far from satisfactory. Please refer to Section
IV-A3 for a more detailed discussion.

Tables VI and VII report the accuracies of the three feature
sets and the proposed method in estimating λnr and λr, re-
spectively. Interestingly, the EPBC, RSRM and TLBP feature
sets achieve lower accuracies in estimating λr than estimating
λnr. The main reason is that the ensemble classifier for
estimating λr includes 17 classes, whereas that for estimating
λnr only includes 9 classes. Distinguishing between more
classes is generally more difficult and leads to lower accuracy.
In comparison with these three methods, the proposed method
shows its superiority in most of the test cases.

D. Compression Parameter Estimation

Tables VIII and IX report the estimation accuracies of the
quantization step qij for the two enhancement methods. In
most test cases, the proposed method can achieve an estimation
accuracy of 90% or more, showing its wide applicability to
various test settings.

There are two observations. First, for a fixed QF, the
estimation accuracy usually reaches its maximum when the
tested enhancement parameter is 1 or close to 1, and gradually
decreases with either a decrease or increase in the enhance-
ment parameter. This behavior, similar to that discussed in
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TABLE IV
ACCURACIES (%) OF THE PROPOSED METHOD IN ESTIMATING THE

ENHANCEMENT PARAMETER λnr FOR THE NON-RECURSIVE
ENHANCEMENT [30].

λnr

QF 50 60 70 80 90

0.7 51.20 66.97 90.58 59.42 0.00
0.8 99.85 99.63 99.48 98.21 43.35
0.9 100 100 100 99.85 98.80
1.0 100 100 100 100 99.78
1.1 99.93 99.93 99.85 99.85 99.10
1.2 99.55 99.55 98.73 99.18 98.73
1.3 97.61 98.65 98.73 98.36 97.98
1.4 95.81 90.66 95.96 87.82 94.25
1.5 95.59 84.23 81.02 85.65 77.88

TABLE V
ACCURACIES (%) OF THE PROPOSED METHOD IN ESTIMATING THE

ENHANCEMENT PARAMETER λr FOR THE RECURSIVE ENHANCEMENT
[31].

λr

QF 50 60 70 80 90

0.7 100 100 100 99.93 87.59
0.8 100 100 100 100 99.70
0.9 100 100 100 100 100
1.0 100 100 100 100 100
1.1 100 100 100 100 100
1.2 99.93 100 100 100 100
1.3 99.55 99.85 100 100 99.93
1.4 99.85 99.93 99.85 99.93 99.78
1.5 99.48 99.78 99.63 99.85 99.70
1.6 99.33 99.55 99.55 99.48 99.55
1.8 99.18 99.63 99.10 99.18 99.03
2.0 98.58 99.10 98.80 98.58 98.13
2.2 97.76 97.61 97.61 98.06 96.94
2.4 96.56 97.68 97.16 97.09 95.74
2.6 95.14 96.41 95.96 96.64 94.02
2.8 93.95 93.57 93.95 95.74 91.55
3.0 92.53 94.02 90.43 93.50 89.09

Section V-C, is mainly caused by the reduction of coefficients
available for estimation.

Second, comparing the same test cases in Table IV with
Table VIII (or Table V with Table IX), we can observe that
in most cases the estimation accuracy of the quantization step
(Table VIII) is slightly lower than that of the enhancement
parameter (Table IV). This is because the estimation of the
quantization step is affected by the estimation error of the
enhancement parameter, making it usually have lower accura-
cy. Surprisingly, several test cases reveal that the estimation
accuracy of the quantization step can also be higher than that
of the enhancement parameter. Taking the case of (λnr,QF) =
(0.9, 90) in Table VIII as an example, the estimation accuracy
of the quantization step is 98.97%, which is higher than
98.80%, the estimation accuracy of the enhancement parame-
ter reported in Table IV. After analyzing these cases, we found
out the cause. As stated in Subsection V-A2, an estimate of
the enhancement parameter is considered to be correct only if
the estimate deviates from the true value less than a tolerance
of 0.025. When an estimate of the enhancement parameter is

TABLE VI
COMPARISON OF ACCURACY (%) IN ESTIMATING THE ENHANCEMENT

PARAMETER λnr FOR THE NON-RECURSIVE ENHANCEMENT [30].

λnr

Method EPBC
[42]

RSRM
[43]

TLBP
[44] Proposed

0.7 55.67 78.48 87.92 55.99
0.8 52.97 86.55 91.60 87.80
0.9 58.09 89.78 95.22 99.73
1.0 54.26 85.74 94.92 99.94
1.1 39.49 85.08 87.92 99.46
1.2 42.87 90.08 89.72 98.42
1.3 39.01 85.41 88.73 96.95
1.4 44.69 83.50 88.91 89.92
1.5 47.77 83.86 91.42 81.10

TABLE VII
COMPARISON OF ACCURACIES (%) IN ESTIMATING THE ENHANCEMENT

PARAMETER λr FOR THE RECURSIVE ENHANCEMENT [31].

λr

Method EPBC
[42]

RSRM
[43]

TLBP
[44] Proposed

0.7 23.38 64.51 73.99 96.80
0.8 40.90 70.49 73.00 99.94
0.9 42.15 77.46 74.53 100
1.0 33.93 71.78 78.48 100
1.1 26.85 68.28 67.95 100
1.2 25.77 70.43 65.83 99.97
1.3 28.64 53.81 60.39 99.73
1.4 24.99 73.27 55.81 99.73
1.5 19.10 58.77 51.78 99.37
1.6 18.03 71.87 66.01 98.98
1.8 15.75 73.03 64.45 98.45
2.0 19.22 73.81 64.48 97.37
2.2 25.74 67.32 67.32 95.81
2.4 17.76 68.49 67.62 94.56
2.6 14.83 74.50 66.73 93.15
2.8 22.30 66.97 61.70 90.97
3.0 11.06 70.97 61.78 88.52

slightly beyond the tolerance, it is considered as an incorrect
estimate, but such slight error sometimes would not mislead
the estimation of the quantization steps, hence resulting in the
above surprising but interpretable phenomenon.

Accuracy comparisons of quantization step estimation are
listed in Tables X and XI. For original (non-enhanced) images,
the compared methods can estimate the quantization steps pre-
cisely, and Yang et al.’s method (improved upon Thai et al.’s
method) achieves the maximum accuracy of 99.79%. How-
ever, their performance declines sharply to an unacceptable
level for enhanced images. In contrast, the proposed method
can achieve competitive performance on original images and
outperform the compared methods on enhanced images by a
remarkable margin.

VI. CONCLUSIONS

Forensic analysis of JPEG-domain enhancement is chal-
lenging due to the difficulty in characterizing the mixed
artifacts caused by JPEG compression and enhancement. This
work addresses this challenge to some extent by proposing a
novel likelihood function to characterize the mixed artifacts
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TABLE VIII
ACCURACIES (%) OF THE PROPOSED METHOD IN ESTIMATING THE

QUANTIZATION STEPS qij IN THE PRESENCE OF THE NON-RECURSIVE
ENHANCEMENT [30].

λnr

QF 50 60 70 80 90

0.7 27.64 33.38 47.04 17.16 1.49
0.8 88.52 94.95 92.04 85.01 15.45
0.9 98.75 99.67 99.58 96.63 98.97
1.0 99.86 99.91 99.34 99.19 99.78
1.1 99.50 99.90 99.75 99.42 99.06
1.2 95.53 99.53 98.69 99.08 98.56
1.3 96.40 98.57 98.67 98.22 97.79
1.4 95.70 90.64 95.93 87.60 94.25
1.5 95.54 84.21 80.97 85.65 77.96

TABLE IX
ACCURACIES (%) OF THE PROPOSED METHOD IN ESTIMATING THE

QUANTIZATION STEPS qij IN THE PRESENCE OF THE RECURSIVE
ENHANCEMENT [31].

λr

QF 50 60 70 80 90

0.7 94.65 98.41 96.94 94.03 71.83
0.8 98.19 99.79 98.41 96.27 99.49
0.9 99.60 99.89 99.93 98.40 99.99
1.0 99.85 99.91 99.34 99.19 99.99
1.1 99.69 99.97 99.97 99.66 99.95
1.2 96.70 99.93 100 99.94 99.95
1.3 98.82 99.74 100 99.92 99.97
1.4 99.78 99.88 99.84 99.73 99.83
1.5 99.28 99.75 99.49 99.84 99.68
1.6 99.14 99.51 99.57 99.45 99.45
1.8 99.13 99.51 99.12 99.14 99.03
2.0 98.56 99.09 98.79 98.58 98.13
2.2 97.64 97.66 97.60 98.05 96.93
2.4 96.53 97.68 97.13 96.99 95.67
2.6 95.08 96.39 95.89 96.55 94.02
2.8 93.86 93.53 93.85 95.67 91.62
3.0 92.47 93.99 90.43 93.43 89.21

from the perspective of DCT coefficient periodicity. Based
on the proposed likelihood function, a forensic method of
enhancement detection and parameter estimation is developed
for two classical methods of JPEG-domain enhancement. The
encouraging performance under various experimental settings
has demonstrated the effectiveness of the proposed likelihood
function and the developed forensic method.

In addition to JPEG-domain enhancement, some JPEG-
domain as well as pixel-domain operations might cause mixed
artifacts when they are adopted to process JPEG images. Their
forensic analysis also faces the challenge of effectively char-
acterizing the mixed artifacts. The idea behind the proposed
likelihood function might provide some inspiration for the
forensic analysis of these operations.

The effectiveness of the proposed method is attributed to
the good likelihood modeling of JPEG coefficients. It might
not be suitable to forensically analyze some state-of-the-art
enhancement methods that are not JPEG-coefficient based. To
better deploy the proposed method, forensics analysts can first
use the existing learning-based methods to roughly identify

what type of operation an image has undergone, and then feed
the image to the proposed method for secondary detection
and parameter estimation if it is identified to be JPEG-domain
enhanced. In such a way, the proposed method helps to not
only confirm the identification result, but also provide more
accurate parameter information for higher-level analysis.
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