Design of image cipher using latin squares

Yue Wu a,1, Yicong Zhou b,*, Joseph P. Noonan a, Sos Agaian c

a Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, United States
b Department of Computer and Information Science, University of Macau, Macau 999078, China
c Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States

A R T I C L E I N F O

Article history:
Received 22 February 2013
Received in revised form 10 September 2013
Accepted 19 November 2013
Available online 27 November 2013

Keywords:
Image encryption
Latin square
Substitution–permutation network
Confusion–diffusion
Error tolerance

A B S T R A C T

In this paper, we introduce a symmetric-key Latin square image cipher (LSIC) for grayscale and color image encryption. Our main contributions include (1) we propose new Latin square image encryption primitives including Latin Square Whitening, Latin Square S-box and Latin Square P-box; (2) we develop probabilistic image encryption by embedding random noise into the least significant bit-plane of images; and (3) we design a new loom-like 2D substitution–permutation network maintaining good confusion and diffusion properties with extra error tolerance. Theoretical analysis and simulation results show that the proposed method has many desired properties of a secure cipher, shows robustness against different attack models, and outperforms state of the art suggested by many peer algorithms. Open-source implementation can be found on the webpage https://sites.google.com/site/tuftsyuewu/source-code.

1. Introduction

With ubiquitous digital images and digital media devices all over the world, the importance of image security has been noticed and emphasized in recent years [50]. In the real world, digital cameras capture the real scene in the format of digital images, and are widely used in many digital devices such as smart phones, IPADs, and laptops. In the virtual world, digital images, including those taken from cameras, scanned documents or pictures, and computer-aid virtual paintings and so on, are the most common elements within a webpage besides texts on the World Wide Web. Due to extensive information within a digital image, divulged image contents sometimes cause severe problems for its owner(s). In many cases, such information leakage seriously invades personal privacy, e.g. the malicious spread of photos in personal online albums or patients’ medical diagnosis images, and furthermore it may cause uncountable losses for a company or a nation, e.g. a secret product design for a company or a governmental classified scanned document.

Conventionally, digital data is encrypted by bit-stream ciphers and block ciphers [1,2,6,27]. The two well-known block ciphers are the Digital Encryption Standard (DES) [1] and its successor Advanced Encryption Standard (AES) [2]. A digital image is a specific type of digital data and can be encrypted by these conventional ciphers. However, they are somewhat insuitable for digital images because of.

• Relatively small block size: digital images are normally of several kilobits (Kb) and megabits (Mb), while conventional bit-stream/block ciphers commonly has a block size less than 256 bits.
Neglect of the nature of digital images: digital images are of two-dimensional data, while conventional bit-stream/block ciphers encrypt an image by indirectly encrypting a pixel sequence extracted from this image.

The first defect implies the low efficiency of encrypting a digital image using a bit-stream/block cipher [9,34,50]. The second defect implies that a pixel sequence of an image is of high information redundancy with a tilted histogram and is distinctive from a common bit sequence input to a bit-stream/block cipher. Therefore, image encryption should be adaptive to image properties and natures.

In general, digital image encryption methods can be classified into two groups: perceptual-level and bit-level. The perceptual-level image encryption methods intend to transform an image into a unrecognized one using a fast algorithm, e.g. transform techniques [8,11,53] and optical encryption techniques [12,23]. In this case, images are believed to be valuable only within a certain time period, e.g. a couple of hours. To some extend, therefore, an encrypted image by using perceptual-level image encryption is insecure because it maybe cracked after a sufficiently long time. In contrast, the bit-level image encryption aims to change an image into a random-like one. In this situation, images are believed to be valuable for a quite long time period, e.g. twenty years. Nowadays, the bit-level image encryption methods are mainly based on chaotic systems [9,17,21,28,34–36,45,46,55]. Although many existing chaotic image encryption algorithms have several good cryptographical properties, they have defects in the following aspects regardless of used chaotic systems:

- A chaotic system is defined on real numbers while a cryptosystem is defined on finite numbers.
- A chaotic system may lose its chaotic nature completely and become periodic when it is discretized.
- A chaotic system’s parameters and initial values can be estimated by a number of existing tools and methods.

The first defect implies difficulties of software and hardware implementation for a chaos-based image encryption method because round-off errors in real number quantizations may lead nonreversible functions for encryption and thus make the decryption process impossible [31]. The second defect implies a chaotic image encryption method could be completely nonchaotic and thus vulnerable to attacks [20]. The third defect reveals a high risk that initial values and parameters used in a chaotic system might be fully analyzed using existing tools and methods after a long-term observation [4,5,30]. For example, [24,36] are cryptanalyzed in [20,18], respectively. Besides chaotic image encryption methods, nonchaotic image encryption methods are also researched by using various random-like patterns, e.g. cellular automata [10], P-Fibonacci transform [53], wave transmission model [21], Sudoku matrices [39,40,42,47], and Gray codes [54]. Although nonchaotic image encryption methods eliminate drawbacks of chaotic encryption methods, especially round-off errors, many of them do not have good confusion and diffusion properties [29] as in chaotic encryption methods, due to the fact that the used random-like patterns are not truly random-like.

In this paper, we introduce a novel image encryption solution LSIC. In particular, to avoid chaotic image ciphers’ drawbacks like round-off errors, randomness degradations, etc. [19], LSIC is designed on integers directly; to achieve good diffusion and confusion properties, it follows the design guideline of the Markov cipher and is constructed according to the SPN [32] with all Latin-square-based primitives, including Latin Square Whitening, Latin Square Substitution and Latin Square Permutation; to achieve fast computations, it adopts a large block size of 256 × 256 bytes; and to further improve security, it also employs the probabilistic encryption [15,16].

The rest of this paper is organized as follows: Section 2 gives a brief review on preliminary materials. Section 3 introduces the new LSIC including its key schedule, probabilistic encryption, and Latin square based encryption primitives. Section 4 discusses simulation setups with extensive results, Section 5 analyzes the cipher security theoretically and experimentally under various attacks, and finally Section 6 concludes the paper and give discussions on open questions in the proposed LSIC.

2. Latin squares

A Latin square of order \(N\) is an \(N \times N\) array filled with a set of \(N\) distinctive symbol elements, where each symbol appears exactly once in each row and each column. The name Latin Square is motivated by the mathematician Leonhard Euler, who used Latin characters as symbols.

Mathematically, we define a Latin square \(L\) of the order \(N\) by an indicator function \(f_L\) on tri-tuple \((r, c, i)\) as follows

\[
f_L(r, c, i) = \begin{cases} 1, & L(r, c) = S_i \\ 0, & \text{otherwise} \end{cases}
\]

(1)

where \(r\) denotes the row index of an element in \(L\) with \(r \in \mathbb{N} = \{0, 1, \ldots, N - 1\}\); \(c\) denotes the column index of an element in \(L\) with \(c \in \mathbb{N}\); \(i\) denotes the index of a symbol element in \(L\) with \(i \in \mathbb{N}\); and \(S_i\) is the \(i\)th symbol in the symbol set \(\mathbb{S} = \{S_0, S_1, \ldots, S_{N-1}\}\).

Therefore, if \(L\) is a Latin square of the order \(N\), then.

- for any fixed \(c, i \in \mathbb{N}\), we have
\[
\sum_{r=0}^{N-1} f_r(r, c, i) = 1
\]

- for any fixed \(r, i \in \mathbb{N} \), we have
\[
\sum_{r=0}^{N-1} f_r(r, c, i) = 1
\]
which implies that each symbol appears exactly once in each row and each column in \(L \).

Fig. 1 shows examples of Latin squares in different orders with various symbol sets. It is worthwhile to note that the popular Sudoku puzzle [3,47] is a special case of the Latin square with additional block constraint as shown in Fig. 1(d).

Although Latin squares can be generated via a variety of means, we use Algorithm 1 [41] below for Latin square generation in this paper.

Algorithm 1. A Latin Square Generator \(L = \text{LSG}(Q_1, Q_2) \).

Input: \(Q_1 \) and \(Q_2 \) are two length-\(N \) sequences

Output: \(L \) is a Latin square of order \(N \)

\[
\begin{align*}
Q_{\text{seed}} &= \text{SortMap}(Q_1) \\
Q_{\text{shift}} &= \text{SortMap}(Q_2) \\
\text{for } r = 0: 1 : N - 1 \text{ do} \\
L(r,:) &= \text{RowShift}(Q_{\text{seed}}, Q_{\text{shift}}(r)) \\
\text{end for}
\end{align*}
\]

In Algorithm 1, both \(Q_1 \) and \(Q_2 \) are length-\(N \) sequences from a pseudo-random number generator (PRNG), e.g., Linear Congruential Generators (LCG) [26]; \(\text{SortMap}(Q) \) is a function to find the index mapping between a sequence \(Q \) and its sorted version \(Q^* \) in the ascending order; and \(\text{RowShift}(Q, v) \) ring shifts the sequence \(Q \) with \(v \) elements towards left. For example, when \(Q_1 = Q_2 = \{0, 1, 2\} \) and \(S = \{A, B, C\} \), Algorithm 1 then generates a Latin square as shown in Fig. 1(a).

3. Latin square image cipher

3.1. The new Latin square image cipher

To standardize the encryption/decryption processing, we choose the cipher processing block to a 256 × 256 byte (1 byte = 8 bits) block. In the rest of this paper, we use \(P \) to denote a 256 × 256 plaintext image block, \(C \) to denote a corresponding ciphertext image block of \(P \), \(L \) to denote a keyed Latin square of the order 256 with the symbol set setting as the integers \(S = \{0, 1, \ldots, 255\} \), and \(K \) to denote a 256-bit encryption key.

The new proposed Latin square image cipher is of a substitution–permutation network (SPN) structure with eight rounds as shown in Fig. 2. It is composed of the probabilistic encryption stage \(\text{LSB noise embedding} \) (LSBNE) and the SPN stage containing three encryption primitives, namely \(\text{Latin Square Whitening} \) (LSW), \(\text{Latin Square Substitution} \) (LSS) and \(\text{Latin Square Permutation} \) (LSP). Specifically, Algorithms 3 and 4 describe the encryption (denoted as function \(\mathcal{E}(P, K) \)) and decryption

![Fig. 1. Latin square examples.](image-url)
(denoted as function $\Xi(C, K)$) processes of the Latin square image cipher, respectively. The detailed encryption/decryption stages in LSIC will be discussed in future sections.

Algorithm 2. Latin Square Image Cipher- Encryption $C = \Xi(P, K)$.

Input: K is a 256-bit key; P is a 256×256 8-bit grayscale image block
Output: C is a 256×256 8-bit grayscale image block
$$(Q_1, Q_2) = \text{KDSG}(K, 8)$$

for $n = 0 : 1 : 7$ **do**

 if $n == 0$ **then**

 $C_{\text{LSP}} = \text{LSBNE}(P)^*$

 end if

 $L_n = \text{LSG}(Q_1^n, Q_2^n)$
 $D_n = L_n(0, 0)$
 $C_{\text{LSW}} = \text{ECR}_w(L_n, C_{\text{LSP}}, D_n)$
 if $\text{mod}(n, 2) = 0$ **then**

 $C_{\text{LSS}} = \text{ECR}_c(L_n, C_{\text{LSW}})$

 end if

 $C_{\text{LSP}} = \text{ECR}_p(L_n, C_{\text{LSS}})$

end for

$L_8 = \text{LSG}(Q_1^8, Q_2^8)$
$D_8 = L_8(0, 0)$
$C = \text{ECR}_w(L_8, C_{\text{LSP}}, D_8)$

Algorithm 3. Latin Square Image Cipher-Decryption $P = \Xi(C, K)$.

input: K is a 256-bit key; C is a 256×256 8-bit grayscale image block
Output: P is a 256×256 8-bit grayscale image block
$$(Q_1, Q_2) = \text{KDSG}(K, 8)$$

for $n = 7 : -1 : 0$ **do**

 if $n == 7$ **then**

 $L_8 = \text{LSG}(Q_1^8, Q_2^8)$
 $D_8 = L_8(0, 0)$
 $P_{\text{LSW}} = \text{DCR}_w(L_8, C, D_8)$
 end if

 $L_n = \text{LSG}(Q_1^n, Q_2^n)$
 $D_n = L_n(0, 0)$
 $P_{\text{LSP}} = \text{DCR}_p(L_n, P_{\text{LSW}})$
 if $\text{mod}(n, 2) = 0$ **then**

 $P_{\text{LSS}} = \text{DCR}_c(L_n, P_{\text{LSP}})$

 end if

 $P_{\text{LSW}} = \text{DCR}_w(L_n, P_{\text{LSS}}, D_n)$

end for

$P = P_{\text{LSW}}$

* LSBNE could be any function to embed the random binary noise in the least significant bit-plane of a plaintext image, e.g. a function randomly change the parity of a plaintext pixel on its LSB.
3.2. LSB noise embedding

Probabilistic encryption [15,16] intends to use randomness in a cipher so that the cipher is able to encrypt one plaintext with the exact same encryption key into distinctive ciphertexts. It is well known that such randomness is crucial to achieve semantic security [7].

In this paper, we introduce such randomness by embedding noise in the least significant bit-plane of an image. More specifically, we XOR a randomly generated 256×256 bit-plane with the least significant bit-plane of the plaintext image, where the generation of this random bit-plane is completely independent on the encryption key.

Fig. 3 shows an example of LSB noise embedding. These introduced noise in LSB does not affect any image visual quality from the point view of human visual perceptibility. However, any slight change in plaintext here will lead to significant changes in ciphertext after it is encrypted by the SPN.

Fig. 2. The new Latin square image cipher.

Fig. 3. Noise embedding in LSB. (a) plaintext Lenna P with histogram (b) noise embedded plaintext P' with histogram, and (c) $|P - P'|$ with the difference of histograms.
3.2. Key translation

In conventional block ciphers, keys are directly used without translation, e.g. in key whitening process, but the proposed LSIC uses a 256-bit encryption key K with key translation to eight key-dependent Latin squares of the order 256 before using in the LSIC. Specifically speaking, for a given 256-bit encryption key K, we.

1. Divide the encryption key K using function SKD into eight 32-bit subkeys, i.e.
 $$K = [k_0, k_1, \ldots, k_7]$$
2. Generate pairs of pseudo-random sequences $(Q_1^0, Q_2^0), (Q_1^1, Q_2^1), \ldots, (Q_1^8, Q_2^8)$, each pair with 2×256 elements by using PRNGs with 32-bit states and these subkeys as seeds.
3. Generate key-dependent Latin squares, i.e. L_0, L_1, \ldots, L_8 with the order of 256 by feeding these pseudo-random sequences in Algorithm 1. Namely, $\forall n \in \{0, 1, \ldots, 8\}$, we have
 $$L_n = LSG(Q_1^n, Q_2^n)$$

The first two steps can be realized via Algorithm 2 with encryption key K and $M = 8$.

Algorithm 4. Key Dependent Sequence Generator $(Q_1, Q_2) = KDSG(Key, M)$.

```plaintext
Input: $K$ is a 256-bit key; $n$ is a nonnegative integer
Output: $Q_1 = \{Q_1^0, \ldots, Q_1^M\}$ and $Q_2 = \{Q_2^0, \ldots, Q_2^M\}$ are $n$-element set of random sequences, each of a length 256.

$K_0 = K$
for $n = 0 : 1 : M$
    $[k_0, k_1, \ldots, k_7] = SKD(K_0)$
    for $i = 0 : 1 : 8$
        $q^i(0) = PRNG(k_i)$
        for $j = 1 : 1 : 63$
            $q^i(j) = PRNG(q^i(j-1))$
        end for
    end for
    $Q_1^n = [q^0(0 : 31), q^1(0 : 31), \ldots, q^7(0 : 31)]$
    $Q_2^n = [q^0(32 : 63), q^1(32 : 63), \ldots, q^7(32 : 63)]$
    $K_{n+1} = [q^0(63), q^1(63), \ldots, q^7(63)]$
end for
```

3.4. Latin square whitening

In the conventional SPN for block ciphers, the Whitening stage normally mixes a plaintext message P with a round key, e.g. XOR operation in [1,2], such that.

- The statistics of the plaintext message P is redistributed after mixing.
- The relationship between the ciphertext and encryption key is quite complicated and involved.

In image encryption, a plaintext message is an image block, P, composed of a number of pixels. Each pixel is represented by several binary bits (a byte). Therefore, XOR whitening scheme become inefficient for image data. It requires an encryption key with the same size as a plaintext image. It also needs to impose bitwise XOR to byte pixels. This type of image encryption is called a naive algorithm in [50]. Since the objective of key whitening is to mix plaintext data with encryption keys, we therefore define key whitening as a transposition cipher [32] in the finite field $GF(2^8)$ for image data, as shown in Eq. (4)

$$y = [x + I]_{2^8}$$

where x is a byte in plaintext, I is a corresponding byte in the keyed Latin square, y is the whitening result and $[.]_{2^8}$ denotes the computations over $GF(2^8)$. The whitening process above can be easily reversed by applying Eq. (5).

$$x = [y + I]_{2^8}$$
In image encryption, the plaintext byte x is a pixel, say it is located at the intersection of rth row and cth column i.e. $x = P(r, c)$. Let $l = L(r, c)$ be an element located at the corresponding position in the keyed Latin square L, and y be the ciphertext byte with $y = C(r, c)$, then we have the pixel-level equation

$$
\begin{align*}
C(r, c) &= \text{SR}(P(r, c), [D]_3) + L(r, c), \\
P(r, c) &= \text{SR}([C(r, c) + L(r, c)]_3, [D]_3)
\end{align*}
$$

(6)

where symbol n denotes the current round number ($n \in [0, 7]$), $D = L(0, 0)$ is the rotating parameter, and SR denotes that the spatial rotating function (X, d) rotates an image X according to different values of the direction d as defined in Eq. (7)

$$
Y = \text{SR}(X, d) = \begin{cases}
X & \text{if } d = 0 \\
\text{Flip } X \uparrow & \text{down if } d = 1 \\
\text{Flip } X \leftarrow & \text{right if } d = 2
\end{cases}
$$

(7)

Notice that if $Y = \text{SR}(X, d)$, then the following identity always holds

$$
X = \text{SR}(Y, d)
$$

(8)

Applying the key whitening for all pixels using the pixel-level Eq. (6), the Latin Square Whitening (LSW) in the image-level then can be denoted as

$$
\text{LSW : } \begin{cases}
C = \text{ECR}_w(L, P, D) \\
P = \text{DCR}_w(L, C, D)
\end{cases}
$$

(9)

Therefore, we can restore the plaintext image block P from the ciphertext image block C using Eq. (9).

Fig. 4 shows an example of Latin Square Whitening, where the first row shows images and the second row shows corresponding histograms of these images. From this example, it is easy to verify that the ciphertext image after the Latin Square Whitening is unrecognizable and its pixels are redistributed to uniform-like.

3.5. Latin square row and column bijections

Since Eqs. (2) and (3) hold, each row and each column in a Latin square L of the order N is a permutation of the integer number sequence $[0, 1, \ldots, N - 1]$. We can define bijections (one-to-one and onto mapping) by mapping this integer number sequence to either a row or a column in a Latin square. In other words, we are able to construct forward and inverse row mapping functions (FRM and IRM) with respect to the rth row in L as shown in Eq. (10), and also forward and inverse column mapping functions (FCM and ICM) with respect to the cth column in L as shown in Eq. (11), where x and y denote the input and output of the mapping functions, respectively.

Fig. 4. A Latin Square Whitening example. (a) plaintext Lenna P, (b) reference Latin square L, and (c) ciphertext $C = \text{ECR}_w(L, P, 0)$.
where \(f_3 \) is the tri-tuple function defined in Eq. (1). Its maximum is equal to 1, i.e. \(f_3(r, x, y) = 1 \), only for the column number \(x \) satisfying the constraint, \(L(r, x) = y \). Furthermore, we have row mapping identities held for arbitrary \(x \) and \(y \) within a Latin square \(L \):
\[
\begin{align*}
IRM(L, r, FRM(L, r, x)) &= x \\
FRM(L, r, IRM(L, r, y)) &= y
\end{align*}
\]
\tag{12}

Similarly, we also have column mapping identities as follows:
\[
\begin{align*}
ICM(L, FCM(L, x, c), c) &= x \\
FCM(L, ICM(L, y, c), c) &= y
\end{align*}
\]
\tag{13}

Fig. 5 shows the FRM and FCM functions defined by a Latin square. As can be seen, given a row number \(r \), the effect of the forward row mapping is to use this Latin square as a look-up table and find the corresponding element in row \(r \). Similarly, given a column number \(c \), the effect of the forward column mapping to find the corresponding element in column \(c \) in this Latin square. Such nice property is directly from the constructional constraint in a Latin square.

Since an \(N \)th order Latin square has \(N \) rows and \(N \) columns, there are \(N \) bijections in the \(N \) row directions and another \(N \) bijections in the \(N \) column directions in the Latin square. A bijection can be directly used as a P-Box\[32\] and can also serve as a S-Box\[32\]. We therefore are able to construct S-Boxes and P-Boxes from a Latin square.

3.6. Latin square substitution

In a cryptographic system, an S-Box is a basic component performing the byte substitution. Each S-Box can be defined as a bijection, also known as a one-to-one and onto mapping. In image encryption, an image pixel is commonly represented as a byte, i.e. a sequence of bits. For example, 8-bit grayscale image has 256 gray intensity scales with each intensity scale represented in an 8-bit sequence.

Because of the existence of FRM/IRM and FCM/ICM bijections in a Latin square, we are able to perform byte substitution in an image cipher using bijections in the row and column directions in a Latin square. The substitution with respect to a row in a Latin square is called Latin Square Row S-box (LSRS) in this paper:

\[
\text{LSRS} : \begin{cases}
C = \text{ECR}_{\text{row}}(L, P) \\
P = \text{DCR}_{\text{row}}(L, C)
\end{cases}
\]
\tag{14}

For the pixel-level function of the LSRS, each ciphertext byte is determined by the FRM function (see Eq. (10)) using the keyed Latin square \(L \) with function parameters given by plaintext bytes and ciphertext bytes as follows

\[
\text{ECR}_{\text{row}} : C(r, c) = \begin{cases}
\text{FRM}(L, C(r - 1, c), P(r, c)) & \text{if } r \neq 0 \\
\text{FRM}(L, 0, P(r, c)) & \text{if } r = 0
\end{cases}
\]
\tag{15}

\[
\begin{array}{c|cccccccc}
\text{Col} & \text{Row} & 0 & 1 & \cdots & r & \cdots & c & \cdots & 255 \\
\hline
0 & 37 & 52 & \cdots & 4 & \cdots & 12 & \cdots & 86 \\
1 & 42 & 17 & \cdots & 35 & \cdots & 1 & \cdots & 71 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
r & 44 & 11 & \cdots & 9 & \cdots & 67 & \cdots & 77 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c & 0 & 2 & \cdots & 62 & \cdots & 3 & \cdots & 35 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
255 & 29 & 58 & \cdots & 41 & \cdots & 56 & \cdots & 4 \\
\end{array}
\]
Clearly, the plaintext bytes then can be perfectly restored from the ciphertext bytes, if we use IRM instead of FRM as follows

\[
\text{DCR}_{\text{row}}(r, c) = \begin{cases}
\text{IRM}(L, C(r - 1, c), C(r, c)) & \text{if } r \neq 0 \\
\text{IRM}(L, 0, C(r, c)) & \text{if } r = 0
\end{cases}
\]

(16)

Similarly, we use bijections from columns in a Latin square to perform byte substitutions. It is called Latin Square Column S-box (LSCS), i.e.

\[
\text{LSCS} : \begin{cases}
C = \text{ECR}_{\text{col}}(L, P) \\
P = \text{DCR}_{\text{col}}(L, C)
\end{cases}
\]

and the corresponding LSCS encryption and decryption processes can also be defined as:

\[
\text{ECR}_{\text{col}}(r, c) = \begin{cases}
\text{FCM}(L, P(r, c), C(r, c - 1)) & \text{if } c \neq 0 \\
\text{FCM}(L, P(r, c), 0) & \text{if } c = 0
\end{cases}
\]

(18)

\[
\text{DCR}_{\text{col}}(r, c) = \begin{cases}
\text{ICM}(L, C(r, c), C(r, c - 1)) & \text{if } c \neq 0 \\
\text{ICM}(L, C(r, c), 0) & \text{if } c = 0
\end{cases}
\]

(19)

Fig. 6 shows the encryption results of Latin Square Row S-box and Latin Square Column S-box. As can be seen, the plaintext image block \(P\) becomes unrecognizable after applying either the LSRS or LSCS. Histogram analysis also shows that the statistics of the image pixel intensity changes dramatically after substitution. The Latin square row/column substitution above has excellent diffusion properties. One pixel change in the plaintext \(P\) will diffuse to a column/row of pixels after a round of the LSRS or LSCS. This diffusion quickly spreads to the entire ciphertext image in several iterations.

3.7. Latin square permutation

Unlike a S-Box performing byte substitution, a P-Box performs byte shuffling or scrambling. Each P-Box can also be defined as a bijection \([32]\).

If we consider both input \(x\) and output \(y\) in FRM and IRM as indices (see Eq. (10)), then FRM defines a mapping \(\{0, 1, \ldots, 255\} \rightarrow \{0, 1, \ldots, 255\}\) and IRM defines the corresponding inverse mapping. We therefore are able to define the Latin square row p-box (LSRP) with respect to rows in a Latin square \(L\) as follows,

\[
\text{LSRP} : \begin{cases}
C(r, c_y) = P(r, \text{FRM}(L, r, c_x)) \\
P(r, c_x) = C(r, \text{IRM}(L, r, c_y))
\end{cases}
\]

(20)

![Fig. 6. A Latin Square Substitution example. (a) plaintext \(P\): Lenna Image, (b) Latin square \(L\), (c) ciphertext \(C_r = \text{ECR}_{\text{row}}(L, P)\), and (d) Ciphertext \(C_c = \text{ECR}_{\text{col}}(L, P)\).](image-url)
where \(c_x \) and \(c_y \) denotes the column indices before and after mapping. Consequently, for any pixel in \(P \) and its corresponding pixel in \(C \) are in the same row \(r \) after LSRP; and the column indices change before and after mapping with the relationship of \(c_y = \text{FRM}(L, r, c_x) \).

Similarly, we can also construct Latin Square Column P-box (LSCP) with respect to the columns in a Latin square as

\[
\text{LSCP} : \begin{cases}
C(r_y, c) = P(\text{FCM}(L, r_x, c), c) \\
P(r_x, c) = C(\text{ICM}(L, r_y, c), c)
\end{cases}
\]
(21)

In order to achieve better performance, we construct our Latin Square Permutation by cascading LSRPs and LSCPs as follows

\[
C(r, c) = C'(\text{FCM}(L, r, c), c) \\
C'(r, c) = P(r, \text{FRM}(L, r, c))
\]
(22)\((23)\)

In general, we write this Latin Square Permutation function as

\[
\text{LSP} : \begin{cases}
C = \text{ECR}_p(L, P) \\
P = \text{DCR}_p(L, C)
\end{cases}
\]
(24)

Fig. 7 shows the permutation results of using the LSRP, LSCP and LSP. It is clear that cascading LSRP and LSCP in the LSP helps to achieve a better pixel permutation performance. Pixels in its ciphertext image become more random-like and make the ciphertext image content unintelligible.

4. Simulation results

4.1. Experiment settings and dataset

We perform the following simulations using MATLAB R2010a in a computer with a Windows 7 Operating System, 6 Gb RAM and Intel Core2 2.66 GHz CPU. Test images are from the Miscellaneous dataset in the USC-SIPI image database (detailed database and image descriptions can be found at\(^2 \)). The open-source LSIC implementation can be found on the webpage https://sites.google.com/site/tuftsyuewu/source-code.

Although we believe that the performance of an image cipher should be tested over a fairly large dataset, e.g. the USC-SIPI Miscellaneous dataset, the analysis of many peer image encryption methods are merely about a small number of test images, e.g. the Lenna image. Therefore, we perform fair comparisons between the proposed LSIC and peer methods [9,13,14,17,21,22,24,25,33,37,38,49,51,55,55], in three following aspects:

- If peer methods have performance reports on the Lenna image, we compare the performance of the LSIC with those methods on the identical Lenna image.
- If peer methods have the accessible source code [9] or the executive file (e.g. bmpPacker\(^3 \)) online, we compare the performance of these methods with the LSIC over the entire Miscellaneous dataset.
- If peer methods have performance reports also on the entire Miscellaneous dataset [24], we directly cite these reports for our comparisons.

Furthermore, we turn off LSBNE function in all simulations because we want to:

\(^2 \) The USC-SIPI image database is a public image database held by the University of South California, available at http://sipi.usc.edu/database/ as the date of 08/18/2013.

\(^3 \) bmpPacker is an encryption software containing many classic block ciphers written by Jens Godeke. Only its AES cipher is used in our simulations. This freeware is available on: http://www.jens-goedeke.eu/tools/bmppacker/ as the date of 08/18/2013.
- prevent the possible unfair comparisons, because other compared algorithms do not have this stage
- emphasize the contributions of the Latin square encryption primitives rather than those from LSBNE

However, the probabilistic encryption stage does enhance the LSIC’s security. Without this stage, encrypting a plaintext image \(P \) twice using the same security key \(K \) will always obtain two identical ciphertext images \(C_1 \) and \(C_2 \), i.e. \(C_1 = C_2 \). This ciphertext information provides an adversary plaintext information that unauthorized users should never know. Therefore, the LSIC with LSBNE is able to encrypt a plaintext image into distinctive ciphertext images because of the embedded noise from time to time are not necessarily the same and thus completely prevent the risk of information leakage in the deterministic encryption.

4.2. Simulation results

Image encryption results using the proposed LSIC for color and grayscale images are shown in Figs. 8 and 9, respectively. As can be seen, the proposed LSIC is able to.

Fig. 8. Sample results of encrypting and decrypting color images using the Latin square image cipher. The 1st column: plaintext images (filenames from top to bottom are 4.1.01, 4.2.03, 4.2.04, 4.2.05 and 4.2.07, respectively); 2nd column: histograms of plaintext images; 3rd column: ciphertext images; 4th column: histograms of ciphertext images; and 5th column: decrypted text images.
It is also worthwhile to note that the test images 5.1.13, ruler.512 and testpat.1k are extremely difficult cases for image encryption because they have large size homogeneous regions, i.e. they have extremely tilted histograms. However, the proposed LSIC encrypts those images successfully.

With regards to the LSIC complexity, for each cipher round, we need 2 operations/pixel (o/p) to generate a 256 × 256 keyed Latin square, 2 o/p to apply Latin square whitening, 2 o/p to implement Latin square permutation, and 2 o/p to perform Latin square substitution using this keyed Latin square. Thus, the proposed LSIC requires 8 o/p for each cipher round.

In simulations, the actual time complexity of the proposed LSIC is 1.2331 ± 0.10089 seconds for a 256 × 256-byte image block computed from all test images in the USC-SIPI Miscellaneous dataset with the MATLAB implementation. Equivalently, the LSIC’s encryption/decryption speed is about 3.32 Mb/s per round under MATLAB. In regard to the decryption speed, the
proposed LSIC is able to decrypt each 256 × 256 image block (pixel in 8-bit byte) with 0.7137 ± 0.06222 s (equivalently 5.74 Mb/s per round) for all test encrypted images from the USC-SIPI Miscellaneous dataset. The decryption speed is faster than encryption because Latin Square S-boxes defined in Eqs. (14) and (17) are asymmetric for encryption and decryption (see Fig. 14).

5. Security analysis

A good image encryption algorithm/cipher should be able to resist all known types of attacks and cryptanalysis. Its performance should be independent on a used encryption key or a plaintext image. First of all, this cipher should be theoretically secure against known attacks. Secondly, a good image encryption algorithm/cipher should have both confusion property and diffusion property, which are proposed in [29] as criteria for secure ciphers. The confusion property implies the cipher’s ability to encrypt an arbitrary plaintext image into random-like ciphertext, so that an adversary cannot extract any information of the plaintext image from ciphertext images. The diffusion property implies the cipher has capability to diffuse even a slight change in a plaintext image over the entire ciphertext image. Furthermore, a good image encryption algorithm/cipher should also be secure with respect to attacks against encryption keys [32] and robust under noisy environment [53]. In this section, we discuss the security of the proposed LSIC under all above analysis and deeply study the LSIC’s performance with extensive simulation results and comparisons.

5.1. Theoretical analysis

5.1.1. Brute-force attack

In cryptography, a brute-force attack, or exhaustive key searching, is a strategy that is able to crack any encrypted data by searching all possible keys in the key space until the right key is found. It is well known that the key length, i.e. the size of the key space used in an encryption system, determines the practical feasibility of performing a brute-force attack: longer keys mean more difficulties than shorter ones in the terms of the time complexity.

The proposed LSIC has a key space of 256 bits, which is larger than or equal to the mainstream cipher standards such as DES [1] and AES [2], where the later one with 192-bit key is known to be large enough to resist the brute-force attacks. Therefore, the proposed LSIC also has a sufficient large key space against the brute-force attack.

It is worthwhile to note the theoretical key space of the proposed LSIC has an even larger key space than 256-bit. As stated in Section 3, the proposed LSIC depends on eight 256 × 256 Latin squares. Regardless of all other methods for generating these Latin squares, the Latin square generator in Algorithm 1, where a Latin square is uniquely determined by two length 256 permutation sequence, can generate 256! × 256! = 2^{3368} number of Latin squares. Consequently, the theoretical key size is about \(2^{3368} \times 8 = 2^{26944}\), i.e. about 26,944 bits. This implies that the adopted key length in the proposed LSIC can be easily increased to withstand the brute-force attacks when the current 256-bit key length is not long enough in the future. Therefore, the proposed LSIC has an extremely large key space against the brute-force attacks.

5.1.2. Ciphertext and plaintext attacks

In cryptography, the ciphertext and plaintext are commonly used in attack models to analyze the security of an encryption system. Specifically speaking, we consider a ciphertext-only attack assuming that an adversary is only able to access a set of ciphertext, a known plaintext attack assuming that an adversary is able to access a set of plaintexts and corresponding ciphertexts, and a chosen-plaintext attack assuming that an adversary is able to access arbitrary plaintexts to be encrypted and obtain the corresponding ciphertexts. As can be seen from attack assumptions, the chosen-plaintext attack provides an adversary the most information about plaintexts and ciphertexts among three attack models. Therefore, if a cipher is able to resist chosen-plaintext attacks, it is also immune to ciphertext-only and known-plaintext attacks.

Many components of LSIC is designed with considerations to resist chosen-plaintext attacks:

- Nonlinear Key Translation: Instead of directly applying the key for encryption in a conventional block cipher, e.g. key whitening, an encryption key used in the proposed LSIC is first translated to eight 256 × 256 Latin squares, and then used for constructing key dependent encryption primitives for image encryption. Therefore, the relationship between the key and ciphertext is more involved and complicated than the conventional key usage.
- Probabilistic Encryption: The proposed LSIC has a pre-process using probabilistic encryption by introducing a small amount of noise to the LSB of a plaintext image. As a result, the LSIC is able to generate significantly different ciphertext images even when the key and the plaintext image are unchanged. It also ensures the deciphered images visually unchanged. This helps the LSIC to achieve semantic security [7].
- Dynamic S-boxes and P-boxes: All S-boxes and P-boxes in the proposed LSIC are dependent on Latin squares in each round. They are dynamically changed instead of fixed from key to key. This implies that, even if an adversary is able to crack an encryption key, all other keys are still safe because P-boxes and S-boxes associated with other keys have not been unbroken yet. They ensure the security of ciphertext images by other keys.

Consequently, the proposed LSIC has good resistance to ciphertext and plaintext attacks.
5.2. Confusion property analysis

The confusion property [29] of a secure cipher emphasizes the ability of making the relationship between the key and the ciphertext as complex and involved as possible. If a cipher has good confusion property, it is very difficult to find the encryption key, even if a large number of plaintext-ciphertext pairs produced by the same encryption key are available for an adversary. In other words, a cipher with good confusion property should be able to withstand the known-plaintext attacks [32] and ciphertext-only attacks [32]. To demonstrate the excellent confusion property of the proposed Latin square image cipher, we perform two types of statistical analysis: entropy and correlation.

5.2.1. Information entropy analysis

Information entropy is a quantitative measure of the randomness of a signal. Because a digital image is a type of digital signal, the entropy analysis can be used to measure the randomness of a test image [43,48]. The information entropy of an image can be defined as Eq. (25), where \(X \) denotes the test image, \(x_i \) denotes the \(i \)th possible value in \(X \), and \(\Pr(x_i) \) is the probability of pulling a random pixel in \(X \) and its value is \(x_i \). The maximum of \(H(X) \) is achieved when \(X \) is uniformly distributed as shown in Eq. (26), i.e. \(X \) has a complete flat histogram and the symbol \(F \) denotes the number of allowed intensity scales associated with the image format. For example, \(F = 256 \) is the number of intensity scales of a grayscale image or a RGB color image. (see Table 1)

\[
H(X) = -\sum_{i=1}^{n} \Pr(x_i) \log_2 \Pr(x_i)
\]

\[
\Pr(X = x_i) = 1/F
\]

For the test images in simulation, \(F = 256 \) and therefore the upper-bound of information entropy is 8. The comparison results of information entropy between the proposed LSIC and peer algorithms are listed in Table 2, where the method with the highest entropy score is shaded for each test image. These results show that the LSIC outperforms listed peer image encryption algorithms/methods.

The results of information entropy analysis for the complete set of test images are listed in Table 3. These results illustrate that the proposed LSIC (1) obtains ciphertext images whose information entropy scores much closer to the entropy upper-bound than those encrypted by other methods; (2) is effective and robust to different image contents and pixel intensity statistics; and (3) outperforms the conventional AES cipher implemented by bmpPacker and the method proposed in [9] in most cases.

5.2.2. Adjacent pixel correlation analysis

Adjacent pixel correlation (APC) is a quantitative measure of the image randomness. It measures the correlations between adjacent pixels within an image. The adjacent pixel correlation can be defined as an autocorrelation function as shown in Eq.

Table 1
Comparison results of information entropy of the Lenna image.

<table>
<thead>
<tr>
<th>Method</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen et al. [9]</td>
<td>7.9938</td>
</tr>
<tr>
<td>Xiang et al. [49]</td>
<td>7.9950</td>
</tr>
<tr>
<td>Wong et al. [38] (reported in [33])</td>
<td>7.9690</td>
</tr>
<tr>
<td>Zhang et al. [51]</td>
<td>7.9980</td>
</tr>
<tr>
<td>Zhu et al. [55]</td>
<td>7.9901</td>
</tr>
<tr>
<td>Sun et al. [33]</td>
<td>7.9965</td>
</tr>
<tr>
<td>Wu et al. [46]</td>
<td>7.9970</td>
</tr>
<tr>
<td>Zhou et al. [52]</td>
<td>7.9969</td>
</tr>
<tr>
<td>LSIC</td>
<td>7.997161</td>
</tr>
</tbody>
</table>

Table 2
Comparison results of information entropy of color images.

<table>
<thead>
<tr>
<th>Channel/Method</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>512 × 512 × 3</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>7.999324</td>
</tr>
<tr>
<td>Green</td>
<td>7.999371</td>
</tr>
<tr>
<td>Blue</td>
<td>7.999292</td>
</tr>
<tr>
<td>(ColorLenna)</td>
<td></td>
</tr>
<tr>
<td>4.2.04</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>7.9802</td>
</tr>
<tr>
<td>Blue</td>
<td>7.9878</td>
</tr>
<tr>
<td>Blue</td>
<td>7.9951</td>
</tr>
<tr>
<td>512 × 512 × 3</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>N/a</td>
</tr>
<tr>
<td>Green</td>
<td>7.9881</td>
</tr>
<tr>
<td>Blue</td>
<td>7.9877</td>
</tr>
<tr>
<td>(ColorPepper)</td>
<td></td>
</tr>
<tr>
<td>4.2.07</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>7.9952</td>
</tr>
<tr>
<td>Green</td>
<td>7.9959</td>
</tr>
<tr>
<td>Blue</td>
<td>7.9954</td>
</tr>
<tr>
<td>4.2.07</td>
<td></td>
</tr>
<tr>
<td>N/a</td>
<td>7.999309</td>
</tr>
<tr>
<td>N/a</td>
<td>7.999285</td>
</tr>
<tr>
<td>4.2.07</td>
<td></td>
</tr>
<tr>
<td>N/a</td>
<td>7.999258</td>
</tr>
</tbody>
</table>
Table 3
Comparison results of information entropy analysis.

<table>
<thead>
<tr>
<th>File</th>
<th>Plaintext</th>
<th>Ciphertext</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>bmpPacker²</td>
</tr>
<tr>
<td>4.1.01</td>
<td>6.898139</td>
<td>7.988561</td>
</tr>
<tr>
<td>4.1.02</td>
<td>6.294498</td>
<td>7.979298</td>
</tr>
<tr>
<td>4.1.03</td>
<td>5.970916</td>
<td>7.990187</td>
</tr>
<tr>
<td>4.1.04</td>
<td>7.426957</td>
<td>7.990089</td>
</tr>
<tr>
<td>4.1.05</td>
<td>7.068625</td>
<td>7.981035</td>
</tr>
<tr>
<td>4.1.06</td>
<td>7.537089</td>
<td>7.989820</td>
</tr>
<tr>
<td>4.1.07</td>
<td>6.583485</td>
<td>7.990487</td>
</tr>
<tr>
<td>4.1.08</td>
<td>6.852716</td>
<td>7.997651</td>
</tr>
<tr>
<td>4.2.01</td>
<td>7.242831</td>
<td>7.998747</td>
</tr>
<tr>
<td>4.2.02</td>
<td>6.416494</td>
<td>7.997469</td>
</tr>
<tr>
<td>4.2.03</td>
<td>7.762436</td>
<td>7.997581</td>
</tr>
<tr>
<td>4.2.04</td>
<td>7.750197</td>
<td>7.997733</td>
</tr>
<tr>
<td>4.2.05</td>
<td>6.663908</td>
<td>7.997463</td>
</tr>
<tr>
<td>4.2.06</td>
<td>7.762170</td>
<td>7.997550</td>
</tr>
<tr>
<td>4.2.07</td>
<td>7.660826</td>
<td>7.908581</td>
</tr>
<tr>
<td>5.1.09</td>
<td>6.709312</td>
<td>7.906739</td>
</tr>
<tr>
<td>5.1.10</td>
<td>7.311807</td>
<td>7.941872</td>
</tr>
<tr>
<td>5.1.11</td>
<td>6.452275</td>
<td>7.929405</td>
</tr>
<tr>
<td>5.1.12</td>
<td>6.705667</td>
<td>7.363568</td>
</tr>
<tr>
<td>5.1.13</td>
<td>1.548314</td>
<td>7.903557</td>
</tr>
<tr>
<td>5.1.14</td>
<td>7.342433</td>
<td>7.992544</td>
</tr>
<tr>
<td>5.2.08</td>
<td>7.201008</td>
<td>7.987446</td>
</tr>
<tr>
<td>5.2.09</td>
<td>6.993994</td>
<td>7.984631</td>
</tr>
<tr>
<td>5.2.10</td>
<td>5.705560</td>
<td>7.987820</td>
</tr>
<tr>
<td>5.3.01</td>
<td>7.523737</td>
<td>7.986599</td>
</tr>
<tr>
<td>5.3.02</td>
<td>6.830330</td>
<td>7.990318</td>
</tr>
<tr>
<td>7.1.01</td>
<td>6.027415</td>
<td>7.985942</td>
</tr>
<tr>
<td>7.1.02</td>
<td>4.004499</td>
<td>7.983057</td>
</tr>
<tr>
<td>7.1.03</td>
<td>5.495740</td>
<td>7.993621</td>
</tr>
<tr>
<td>7.1.04</td>
<td>6.107418</td>
<td>7.983570</td>
</tr>
<tr>
<td>7.1.05</td>
<td>6.563196</td>
<td>7.985406</td>
</tr>
<tr>
<td>7.1.06</td>
<td>6.695283</td>
<td>7.985253</td>
</tr>
<tr>
<td>7.1.07</td>
<td>5.991599</td>
<td>7.990304</td>
</tr>
<tr>
<td>7.1.08</td>
<td>5.053448</td>
<td>7.983746</td>
</tr>
<tr>
<td>7.1.09</td>
<td>6.189814</td>
<td>7.985088</td>
</tr>
<tr>
<td>7.1.10</td>
<td>5.908790</td>
<td>7.998478</td>
</tr>
<tr>
<td>7.2.01</td>
<td>5.641454</td>
<td>7.985051</td>
</tr>
<tr>
<td>boat.512</td>
<td>7.191370</td>
<td>7.989566</td>
</tr>
<tr>
<td>elaine.512</td>
<td>7.505984</td>
<td>6.492821</td>
</tr>
<tr>
<td>gray21.512</td>
<td>4.392295</td>
<td>7.979908</td>
</tr>
<tr>
<td>house</td>
<td>7.485787</td>
<td>7.997553</td>
</tr>
<tr>
<td>numbers.512</td>
<td>7.729247</td>
<td>6.893247</td>
</tr>
<tr>
<td>ruler.512</td>
<td>0.500033</td>
<td>7.903134</td>
</tr>
<tr>
<td>testpat.1k</td>
<td>4.407726</td>
<td>7.903132</td>
</tr>
<tr>
<td>Statistics</td>
<td># Best</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>7.905055</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>0.290957</td>
</tr>
</tbody>
</table>

a \(q'(j_1 : j_2) \) denotes a vector of pseudo-random numbers with elements \(q'(j_1), q'(j_1 + 1), \ldots, q'(j_2 - 1), q'(j_2) \).

(27), where \(X_t \) denotes an extracted pixel sequence and \(X_{t+1} \) denotes a pixel sequence where each pixel is the adjacent pixel of the corresponding pixel in \(X_t \). \(\mu \) is the mean value defined by Eq. (28) and \(\sigma \) is the standard deviation defined by Eq. (29), the definition of mathematical expectation is given in Eq. (30).
The closer to zero the correlation coefficient is, the weaker relationship between the pixel sequence and its adjacent pixel sequence. Because the adjacent pixel sequence can be extracted from the horizontal, vertical, or diagonal direction, the adjacent pixel correlation will be analyzed with respect to these three directions.

Fig. 10 shows the APC plots of the randomly selected 1024 pairs of adjacent pixels along the horizontal, vertical and diagonal directions. In the APC plots, the horizontal axis denotes the intensity of one set of randomly selected pixels while the vertical axis denotes the intensity of its corresponding set of adjacent pixels. The APC results for the Lenna image are listed in Table 4. The proposed LSIC decorrelates adjacent pixels in the plaintext image after the encryption process. It outperforms the listed encryption algorithms [9,14,17,21] due to its smaller correlation coefficients.

Table 5 shows the APCs for test plaintext images and their corresponding ciphertext images using the LSIC and peer algorithms, where the best APC score is shaded for each test image. These results further demonstrate that the proposed LSIC outperforms peer algorithms in most trails with the smallest mean and standard deviation of APCs.

\[APC = E[(X_t - \mu)(X_{t+1} - \mu)]/\sigma^2 \]
\[\mu = E[X] \]
\[\sigma = \sqrt{E[(X - \mu)^2]} \]
\[E[x] = \sum_{t=1}^{N} x_t/N \]
5.3. Diffusion property analysis

The diffusion property describes the cipher’s ability of diffusing a change in a plaintext image over its corresponding ciphertext image. If a cipher is weak in diffusion, it might be vulnerable against the differential attacks\[32\]. The number of changing pixel rate (NPCR) and the unified averaged changed intensity (UACI) are two most common quantitative methods to evaluate an image encryption method/algorithm/cipher for resist differential attacks\[9,21,44,55\].
Fig. 11 shows the sample results of the LSIC’s diffusion property. The plaintext image P_1 differs from P_2 only one pixel on *Lenna*’s shoulder. C_1 and C_2 are corresponding ciphertext images using the same encryption key. As can be seen, a single pixel difference between P_1 and P_2 diffuses to the entire cipher image and leads to a significant difference between C_1 and C_2.

Mathematically, the NPCR, $\text{NPCR}(C_1, C_2)$, and UACI, $\text{UACI}(C_1, C_2)$, can be defined as Eqs. (31) and (32), respectively. They measure two ciphertext images, C_1 and C_2, whose plaintext images are slightly different. Their difference $\text{Diff}(i,j)$ defined in Eq. (33) denotes whether two pixels located at the image grid (i,j) of C_1 and C_2 are equal. The symbols T and S denote the number of pixels in the ciphertext image and the number of allowed pixel intensity scales, respectively.

$$\text{NPCR}(C_1, C_2) = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} \text{Diff}(i,j)}{T} \times 100\%$$

$$\text{UACI}(C_1, C_2) = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} |C_1(i,j) - C_2(i,j)|}{S \cdot T} \times 100\%$$

$$\text{Diff}(i,j) = \begin{cases} 0, & \text{if } C_1(i,j) = C_2(i,j) \\ 1, & \text{if } C_1(i,j) \neq C_2(i,j) \end{cases}$$

It is noticeable that NPCR concentrates on the absolute number of pixels which changes values in differential attacks, while the UACI focuses on the averaged difference between the paired ciphertext images. Moreover, both NPCR and UACI scores can also be interpreted qualitatively, namely we can use these scores to test whether one can distinguish these ciphertext images from truly random ones. In particular, [44] demonstrated that NPCR and UACI follow normal distributions shown in Eqs. (34) and (35), respectively.

$$\text{NPCR} \sim \mathcal{N}(\mu_{\text{npcr}}, \sigma^2_{\text{npcr}}), \text{ with } \mu_{\text{npcr}} = \frac{S-1}{S} \text{ and } \sigma^2_{\text{npcr}} = \frac{S-1}{7S^2}$$

$$\text{UACI} \sim \mathcal{N}(\mu_{\text{uaci}}, \sigma^2_{\text{uaci}}), \text{ with } \mu_{\text{uaci}} = \frac{S+1}{3S} \text{ and } \sigma^2_{\text{uaci}} = \frac{(S+1)(S^2+2)}{18T(S-1)S^2}$$

Table 6
Comparison results of the NPCR and UACI scores of the *Lenna* image.

<table>
<thead>
<tr>
<th>Encryption method</th>
<th>UACI%</th>
<th>P-value</th>
<th>Result</th>
<th>NPCR%</th>
<th>P-value</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen et al. [9]</td>
<td>33.14</td>
<td>0.0005</td>
<td>Fail</td>
<td>99.25</td>
<td>0.0000</td>
<td>Fail</td>
</tr>
<tr>
<td>Liao et al. [21]</td>
<td>33.48</td>
<td>0.8587</td>
<td>Success</td>
<td>99.65</td>
<td>0.9523</td>
<td>Success</td>
</tr>
<tr>
<td>Zhu et al. [55]</td>
<td>33.48</td>
<td>0.8587</td>
<td>Success</td>
<td>99.63</td>
<td>0.8014</td>
<td>Success</td>
</tr>
<tr>
<td>Wu et al. [46]</td>
<td>33.39</td>
<td>0.4263</td>
<td>Success</td>
<td>99.58</td>
<td>0.1140</td>
<td>Success</td>
</tr>
<tr>
<td>Zhou et al. [52]</td>
<td>33.24</td>
<td>0.0156</td>
<td>Success</td>
<td>99.60</td>
<td>0.3502</td>
<td>Success</td>
</tr>
<tr>
<td>LSIC</td>
<td>33.4936</td>
<td>0.7450</td>
<td>Success</td>
<td>99.6689</td>
<td>0.9927</td>
<td>Success</td>
</tr>
</tbody>
</table>

Fig. 11 shows the sample results of the LSIC’s diffusion property. The plaintext image P_1 differs from P_2 only one pixel on *Lenna*’s shoulder. C_1 and C_2 are corresponding ciphertext images using the same encryption key. As can be seen, a single pixel difference between P_1 and P_2 diffuses to the entire cipher image and leads to a significant difference between C_1 and C_2. The difference $\text{Diff}(i,j)$ defined in Eq. (33) denotes whether two pixels located at the image grid (i,j) of C_1 and C_2 are equal. The symbols T and S denote the number of pixels in the ciphertext image and the number of allowed pixel intensity scales, respectively.

$$\text{NPCR}(C_1, C_2) = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} \text{Diff}(i,j)}{T} \times 100\%$$

$$\text{UACI}(C_1, C_2) = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} |C_1(i,j) - C_2(i,j)|}{S \cdot T} \times 100\%$$

$$\text{Diff}(i,j) = \begin{cases} 0, & \text{if } C_1(i,j) = C_2(i,j) \\ 1, & \text{if } C_1(i,j) \neq C_2(i,j) \end{cases}$$

It is noticeable that NPCR concentrates on the absolute number of pixels which changes values in differential attacks, while the UACI focuses on the averaged difference between the paired ciphertext images. Moreover, both NPCR and UACI scores can also be interpreted qualitatively, namely we can use these scores to test whether one can distinguish these ciphertext images from truly random ones. In particular, [44] demonstrated that NPCR and UACI follow normal distributions shown in Eqs. (34) and (35), respectively.

$$\text{NPCR} \sim \mathcal{N}(\mu_{\text{npcr}}, \sigma^2_{\text{npcr}}), \text{ with } \mu_{\text{npcr}} = \frac{S-1}{S} \text{ and } \sigma^2_{\text{npcr}} = \frac{S-1}{7S^2}$$

$$\text{UACI} \sim \mathcal{N}(\mu_{\text{uaci}}, \sigma^2_{\text{uaci}}), \text{ with } \mu_{\text{uaci}} = \frac{S+1}{3S} \text{ and } \sigma^2_{\text{uaci}} = \frac{(S+1)(S^2+2)}{18T(S-1)S^2}$$
Table 6 shows corresponding NPCR and UACI scores, randomness test P-values and test results of C_1 and C_2 using the proposed LSIC and other encryption algorithms.

Table 7
Comparison results of the LSIC's diffusion properties.

<table>
<thead>
<tr>
<th>File</th>
<th>UACI%</th>
<th>P-value</th>
<th>Result</th>
<th>NPCR%</th>
<th>P-value</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.01</td>
<td>33.4402</td>
<td>0.6618</td>
<td>Success</td>
<td>99.5885</td>
<td>0.0689</td>
<td>Success</td>
</tr>
<tr>
<td>4.1.02</td>
<td>33.3715</td>
<td>0.0846</td>
<td>Success</td>
<td>99.6272</td>
<td>0.8974</td>
<td>Success</td>
</tr>
<tr>
<td>4.1.03</td>
<td>33.513</td>
<td>0.3540</td>
<td>Success</td>
<td>99.6297</td>
<td>0.9257</td>
<td>Success</td>
</tr>
<tr>
<td>4.1.04</td>
<td>33.5303</td>
<td>0.2110</td>
<td>Success</td>
<td>99.6023</td>
<td>0.3075</td>
<td>Success</td>
</tr>
<tr>
<td>4.1.05</td>
<td>33.4018</td>
<td>0.2473</td>
<td>Success</td>
<td>99.6028</td>
<td>0.3201</td>
<td>Success</td>
</tr>
<tr>
<td>4.1.06</td>
<td>33.5235</td>
<td>0.2612</td>
<td>Success</td>
<td>99.5956</td>
<td>0.1637</td>
<td>Success</td>
</tr>
<tr>
<td>4.1.07</td>
<td>33.5855</td>
<td>0.0223</td>
<td>Success</td>
<td>99.6302</td>
<td>0.9306</td>
<td>Success</td>
</tr>
<tr>
<td>4.1.08</td>
<td>33.4874</td>
<td>0.6548</td>
<td>Success</td>
<td>99.6089</td>
<td>0.4865</td>
<td>Success</td>
</tr>
<tr>
<td>4.2.01</td>
<td>33.4763</td>
<td>0.6325</td>
<td>Success</td>
<td>99.6058</td>
<td>0.3056</td>
<td>Success</td>
</tr>
<tr>
<td>4.2.02</td>
<td>33.4431</td>
<td>0.4436</td>
<td>Success</td>
<td>99.6179</td>
<td>0.8872</td>
<td>Success</td>
</tr>
<tr>
<td>4.2.03</td>
<td>33.5031</td>
<td>0.1382</td>
<td>Success</td>
<td>99.6112</td>
<td>0.6455</td>
<td>Success</td>
</tr>
<tr>
<td>4.2.04</td>
<td>33.5113</td>
<td>0.0735</td>
<td>Success</td>
<td>99.6146</td>
<td>0.7712</td>
<td>Success</td>
</tr>
<tr>
<td>4.2.05</td>
<td>33.4475</td>
<td>0.5477</td>
<td>Success</td>
<td>99.6231</td>
<td>0.9745</td>
<td>Success</td>
</tr>
<tr>
<td>4.2.06</td>
<td>33.4145</td>
<td>0.0661</td>
<td>Success</td>
<td>99.6113</td>
<td>0.6078</td>
<td>Success</td>
</tr>
<tr>
<td>4.2.07</td>
<td>33.4708</td>
<td>0.7856</td>
<td>Success</td>
<td>99.6031</td>
<td>0.1862</td>
<td>Success</td>
</tr>
<tr>
<td>5.1.09</td>
<td>33.6739</td>
<td>0.0229</td>
<td>Success</td>
<td>99.617</td>
<td>0.6228</td>
<td>Success</td>
</tr>
<tr>
<td>5.1.10</td>
<td>33.5039</td>
<td>0.8624</td>
<td>Success</td>
<td>99.617</td>
<td>0.6228</td>
<td>Success</td>
</tr>
<tr>
<td>5.1.11</td>
<td>33.5079</td>
<td>0.6313</td>
<td>Success</td>
<td>99.5529</td>
<td>0.0102</td>
<td>Success</td>
</tr>
<tr>
<td>5.1.12</td>
<td>33.4536</td>
<td>0.9143</td>
<td>Success</td>
<td>99.6033</td>
<td>0.4016</td>
<td>Success</td>
</tr>
<tr>
<td>5.1.13</td>
<td>33.3681</td>
<td>0.3018</td>
<td>Success</td>
<td>99.6033</td>
<td>0.4016</td>
<td>Success</td>
</tr>
<tr>
<td>5.1.14</td>
<td>33.6904</td>
<td>0.1146</td>
<td>Success</td>
<td>99.5636</td>
<td>0.0301</td>
<td>Success</td>
</tr>
<tr>
<td>5.2.08</td>
<td>33.5379</td>
<td>0.1076</td>
<td>Success</td>
<td>99.6067</td>
<td>0.4131</td>
<td>Success</td>
</tr>
<tr>
<td>5.2.09</td>
<td>33.3704</td>
<td>0.0439</td>
<td>Success</td>
<td>99.6151</td>
<td>0.6808</td>
<td>Success</td>
</tr>
<tr>
<td>5.2.10</td>
<td>33.5169</td>
<td>0.2483</td>
<td>Success</td>
<td>99.5987</td>
<td>0.1905</td>
<td>Success</td>
</tr>
<tr>
<td>5.3.01</td>
<td>33.5039</td>
<td>0.0807</td>
<td>Success</td>
<td>99.6115</td>
<td>0.6364</td>
<td>Success</td>
</tr>
<tr>
<td>5.3.02</td>
<td>33.4856</td>
<td>0.3398</td>
<td>Success</td>
<td>99.6077</td>
<td>0.3917</td>
<td>Success</td>
</tr>
<tr>
<td>7.1.01</td>
<td>33.5084</td>
<td>0.3317</td>
<td>Success</td>
<td>99.5918</td>
<td>0.0746</td>
<td>Success</td>
</tr>
<tr>
<td>7.1.02</td>
<td>33.4485</td>
<td>0.7448</td>
<td>Success</td>
<td>99.6124</td>
<td>0.5980</td>
<td>Success</td>
</tr>
<tr>
<td>7.1.03</td>
<td>33.5236</td>
<td>0.1938</td>
<td>Success</td>
<td>99.6346</td>
<td>0.9808</td>
<td>Success</td>
</tr>
<tr>
<td>7.1.04</td>
<td>33.5454</td>
<td>0.0765</td>
<td>Success</td>
<td>99.6029</td>
<td>0.2975</td>
<td>Success</td>
</tr>
<tr>
<td>7.1.05</td>
<td>33.3958</td>
<td>0.1427</td>
<td>Success</td>
<td>99.6063</td>
<td>0.4004</td>
<td>Success</td>
</tr>
<tr>
<td>7.1.06</td>
<td>33.4756</td>
<td>0.7942</td>
<td>Success</td>
<td>99.6262</td>
<td>0.9164</td>
<td>Success</td>
</tr>
<tr>
<td>7.1.07</td>
<td>33.4469</td>
<td>0.7188</td>
<td>Success</td>
<td>99.5953</td>
<td>0.1240</td>
<td>Success</td>
</tr>
<tr>
<td>7.1.08</td>
<td>33.5569</td>
<td>0.0434</td>
<td>Success</td>
<td>99.6128</td>
<td>0.6107</td>
<td>Success</td>
</tr>
<tr>
<td>7.1.09</td>
<td>33.3964</td>
<td>0.1463</td>
<td>Success</td>
<td>99.5953</td>
<td>0.1240</td>
<td>Success</td>
</tr>
<tr>
<td>7.1.10</td>
<td>33.3942</td>
<td>0.1335</td>
<td>Success</td>
<td>99.588</td>
<td>0.0397</td>
<td>Success</td>
</tr>
<tr>
<td>7.2.01</td>
<td>33.4813</td>
<td>0.4422</td>
<td>Success</td>
<td>99.6142</td>
<td>0.7858</td>
<td>Success</td>
</tr>
<tr>
<td>boat.512</td>
<td>33.3792</td>
<td>0.0680</td>
<td>Success</td>
<td>99.5941</td>
<td>0.1050</td>
<td>Success</td>
</tr>
<tr>
<td>elaine.512</td>
<td>33.443</td>
<td>0.6567</td>
<td>Success</td>
<td>99.6185</td>
<td>0.7731</td>
<td>Success</td>
</tr>
<tr>
<td>gray21.512</td>
<td>33.4651</td>
<td>0.9534</td>
<td>Success</td>
<td>99.6174</td>
<td>0.8730</td>
<td>Success</td>
</tr>
<tr>
<td>house</td>
<td>33.457</td>
<td>0.8874</td>
<td>Success</td>
<td>99.6063</td>
<td>0.4004</td>
<td>Success</td>
</tr>
<tr>
<td>numbers.512</td>
<td>33.4484</td>
<td>0.7432</td>
<td>Success</td>
<td>99.6258</td>
<td>0.9112</td>
<td>Success</td>
</tr>
<tr>
<td>ruler.512</td>
<td>33.4471</td>
<td>0.7220</td>
<td>Success</td>
<td>99.6002</td>
<td>0.2257</td>
<td>Success</td>
</tr>
<tr>
<td>testpat.1k</td>
<td>33.4748</td>
<td>0.6261</td>
<td>Success</td>
<td>99.6018</td>
<td>0.1068</td>
<td>Success</td>
</tr>
</tbody>
</table>

Table 6 shows corresponding NPCR and UACI scores, randomness test P-values and test results of C_1 and C_2 using the proposed LSIC and other encryption algorithms. Table 7 shows the detailed NPCR and UACI scores, test P-values and results for the entire test image set. As one can see, all tested images passed both the NPCR and UACI randomness tests, indicating that the encrypted images are indistinguishable from random images under these two tests.

5.4. Key sensitivity analysis

A secure cipher should have high key sensitivities in both encryption and decryption processes. Simulation results with respect to encryption and decryption stages are shown in Figs. 12 and 13. The encryption keys in our simulations are listed below in the HEX format:

$$
\begin{align*}
K_1 &= B9B5ED7585C8B15D7454ED271AA3A3A07B00321C11759D0FDE340234384BC9 \\
K_2 &= B9B5ED7585C8B15D7454ED271AA3A3A07B00321C11759D0FDE340234384BC8 \\
K_3 &= 39B5ED7585C8B15D7454ED271AA3A3A07B00321C11759D0FDE340234384BC8
\end{align*}
$$

4 NPCR and UACI randomness tests are introduced in [44] and its implementation is available from. The test significance levels for both tests are set to 0.01, i.e. if a test P-value is smaller than 0.01, this score then fails to pass the test.
As can be seen, K_1 differs K_2 only for the last bit; K_2 differs K_3 only for the first bit; and K_1 differs K_3 only for the first and the last bit. Although the hamming distances between K_1, K_2 and K_3 are very small, i.e. they are very similar to each other, their corresponding ciphertext images C_1, C_2 and C_3 have significant differences. These can be verified by the fact that their differences, i.e. $|C_1 - C_2|$, $|C_2 - C_3|$ and $|C_3 - C_1|$ are random-like images as shown in Fig. 12. The example shows the proposed LSIC is sensitive to the encryption keys in the encryption stage.

Fig. 12. Key sensitivity analysis at the encryption stage. (a) plaintext P Lena, (b) ciphertext $C_1 = \psi(P, K_1)$, (c) ciphertext $C_2 = \psi(P, K_2)$, (d) ciphertext $C_3 = \psi(P, K_3)$, (e) ciphertext difference $|C_1 - C_2|$, (f) ciphertext difference $|C_2 - C_3|$, and (g) ciphertext difference $|C_3 - C_1|$.

Fig. 13. Key sensitivity analysis at the decryption stage. (a) ciphertext C_1, (b) deciphered text $D_1 = \tau(C_1, K_1)$, (c) deciphered text $D_2 = \tau(C_1, K_2)$, and (d) deciphered text $D_3 = \tau(C_1, K_3)$.

Fig. 14. Latin Square Substitution has an asymmetric structure for encryption and decryption.
Similar results can also be obtained in the decryption stage as shown in Fig. 13. We decrypt the same ciphertext image \(C_1 \) using the encryption keys \(K_1, K_2 \) and \(K_3 \), respectively. As can be seen, using the correct encryption key \(K_1 \), decrypted image \(D_1 \) perfectly reconstructs the original plaintext image. However, decrypted images \(D_2 \) and \(D_3 \) using key \(K_2 \) and \(K_3 \) are random-like ones which do not contain any information related to the original plaintext image.

5.5. Error tolerance analysis

Due to possible noise in channels or coding errors, one cannot guarantee that an encrypted image sent on one side is identical to the image received on the other side. Unless an image cipher is able to tolerate errors a certain level of errors, it is impossible for a receiver to correct decrypt the received encrypted image with small errors even with a right key. Therefore, a good cipher is favored to tolerate errors.

In practice, the Latin Square Substitution is of an asymmetric structure as shown in Fig. 14. Encrypting one plaintext byte requires one plaintext byte and one previous ciphertext byte, while decrypting one ciphertext byte requires two adjacent ciphertext byte but no plaintext byte. This process is similar to weave a thread of ciphertext bytes on the ciphertext image, which has to be done by intersecting the longitudinal threads of the plaintext bytes.

As a result, changing one pixel in a plaintext image influence all pixels after it in its row in the first encryption round, further all pixels after these influenced pixels in the corresponding columns in the second encryption round, and then more pixels in the third encryption round, so on and so forth until the last round. As a result, a small change in the plaintext image will lead to a completely different ciphertext image. In contrast, changing one pixel in a ciphertext image only leads a two-pixel-change in the first decryption round, and at most \(2^8 = 256 \) pixel changes in the deciphered image. Hence the Latin Square Substitution achieves both above-mentioned goals, and gains encryption diffusion properties against the plaintext change and decryption robustness against the ciphertext noise simultaneously. More results and examples will be provided in the future sections.

Fig. 15 shows the results of the LSIC’s decryption robustness against various noise levels in ciphertext images. After the decryption process, noise concentrating in the center square of a ciphertext image distributed almost evenly over the deciphered image. Due to the psychovisual redundancy within an image, human vision system is still able to recognize the deciphered image contents as long as it is not fully unintelligible.

6. Conclusion

In this paper, we have introduced a symmetric-key Latin square image cipher with probabilistic encryption. This new LSIC has distinctive characteristics: (1) the LSIC is purely defined in integers, and thus it can be easily implemented in software and hardware without causing finite precision or descritization problems; (2) the LSIC constructs all encryption primitives based on one keyed Latin square, including whitening, substitution and permutation, and thus the LSIC attains high sensitivities to any key change; (3) the LSIC encrypts image pixels in the unit of byte instead of bit and processes a \(256 \times 256 \) plaintext image at one time, and thus it is efficient for image data; (4) the LSIC arranges all these encryption primitives in the framework of substitution–permutation network, and thus it attains good confusion and diffusion properties [29]; (5) the LSIC also integrates probabilistic encryption allowing to encrypt one plaintext image into different ciphertext images with one encryption key; and (6) the LSIC’s decryption stage is robust against a certain level of errors.
The LSIC’s effectiveness and robustness have been demonstrated by extensive simulation results using the complete USC-SIPI Miscellaneous image dataset. Theoretical security analysis has shown that the LSIC is able to withstand the brute-force attacks, ciphertext-only attacks, known-plaintext attacks and chosen-plaintext attacks. Experimental security analysis with comparisons to peer algorithms have indicated that the LSIC outperforms or reaches state of the art. All these analysis and results have demonstrated that the LSIC is very suitable for digital image encryption.

The essence of the LSIC is to use a short key to first trigger large size Latin squares, then to construct randomized encryption primitives according to these keyed Latin squares for future image encryption. Following this main pipeline, it is not difficult to see that we can easily adjust the used key length and Latin square sizes for a particular application. One open question is whether ‘weak’ Latin squares exist, though we failed to find any so far. If such ‘weak’ Latin squares exist, then the next question is how to recognize them in an early stage. Eventually, we need some means to evaluate the suitability of a Latin square for image encryption. However, none of these question is answered in this paper.

Acknowledgement

This work was supported in part by the Macau Science and Technology Development Fund under Grant 017/2012/A1 and by the Research Committee at University of Macau under Grants MYRG113(Y1-L3)-FST12-ZYC and MRG001/ZYC/2013/FST.

References