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Adaptive Transition Probability Matrix Learning
for Multiview Spectral Clustering
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Abstract— Multiview clustering as an important unsupervised
method has been gathering a great deal of attention. However,
most multiview clustering methods exploit the self-representation
property to capture the relationship among data, resulting in
high computation cost in calculating the self-representation coef-
ficients. In addition, they usually employ different regularizers to
learn the representation tensor or matrix from which a transition
probability matrix is constructed in a separate step, such as
the one proposed by Wu et al.. Thus, an optimal transition
probability matrix cannot be guaranteed. To solve these issues,
we propose a unified model for multiview spectral clustering
by directly learning an adaptive transition probability matrix
(MCA2M), rather than an individual representation matrix of
each view. Different from the one proposed by Wu et al.,
MCA2M utilizes the one-step strategy to directly learn the tran-
sition probability matrix under the robust principal component
analysis framework. Unlike existing methods using the absolute
symmetrization operation to guarantee the nonnegativity and
symmetry of the affinity matrix, the transition probability matrix
learned from MCA2M is nonnegative and symmetric without any
postprocessing. An alternating optimization algorithm is designed
based on the efficient alternating direction method of multipliers.
Extensive experiments on several real-world databases demon-
strate that the proposed method outperforms the state-of-the-art
methods.

Index Terms— Adaptive learning, low-rank representation
(LRR), Markov chain, multiview clustering, spectral clustering.
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I. INTRODUCTION

W ITH the advance of data collection and storage, modern
data are usually described by different features or

modalities, i.e., multiviews. For example, face images usually
are captured with different features, such as color, textures, and
edges, for face recognition [2], [3]; in surveillance systems,
the target person is monitored from multiple cameras for
person identification [4], [5]. These multiview features can
provide complementary and compatible information to each
other, and thus, are beneficial for data analysis. Considering
this fact, there is a rapidly growing interest in partitioning
unlabeled data points with multiview features into several
distinct groups with the assistance of multiview features,
generating the class of multiview clustering [1], [6]–[8].

The goal of multiview clustering is to uncover the under-
lying data structures by using multiview features to overcome
the deficiency from a single view [7], [9], [10]. A surge
of approaches has been proposed for multiview clustering.
The works in [11]–[14] may construct different graphs for
multiple views or learn a fusion graph shared by all views
and then apply graph cut algorithm to generate the final
segmentation results. Specifically, Nie et al. [11] proposed
to learn a Laplacian rank constrained graph. Tao et al. [12]
learned a common similarity matrix. In view of the above-
mentioned works, Zhan et al. [13], [14] proposed the robust
and consensus graph learning methods. However, these mul-
tiview graph clustering methods may ignore some global
priors, such as low rankness [7], [9], [15] since they usually
assign nearest neighbors for each data point based on pairwise
distances. From the perspective of the optimization models
they employ, subspace clustering-based methods are usually
based on the low-rank representation (LRR) model [16],
while spectral clustering-based ones are under the robust
principal component analysis (RPCA) framework [17]. Multi-
view subspace clustering methods usually extended traditional
clustering methods, such as the sparse subspace clustering
(SSC) [18] and LRR [16] to handle multiview features from
the matrix and tensor aspects. For instance, the study in [19]
performed the subspace clustering on each view and simultane-
ously learn a common indicator matrix for the representation
consistency. Brbić and Kopriva [20] extended the low-rank
SSC into multiview setting. Zhang et al. [21] developed a
latent representation learning model to overcome potential
noise and outliers from data contamination. In [22], the LRR
model was used to learn a common representation, and a
rank constraint [23] was used to promote the construction
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of the affinity matrix. Unlike the above matrix-optimization
methods, the works in [2], [7], [9], and [24] addressed the
multiview clustering task from the tensor-optimization aspect
and have achieved superior performance. The reason is that
they stored all representation matrices into a third-order tensor
to explore the high-order correlations underlying multiview
data. However, they usually suffer from high computational
complexity. This is mainly because at each iteration they
are inevitable to perform the matrix inversion with O(n3)
complexity, where n is the number of data points.

To alleviate the high computational cost of subspace
clustering methods, a large number of efficient methods
based on SSC and LRR have been proposed. For example,
Peng et al. [25] and Matsushima and Brbić [26] proposed a
scalable SSC and a selective sampling-based scalable SSC,
respectively. By factorizing the representation matrix into
two small-scale factor matrices, the work in [27] developed
an online low-rank subspace clustering method to yield the
linear complexity. To handle the multiview clustering task,
Kang et al. [28] proposed a linear large-scale multiview
subspace clustering. Another line to reduce the computation
cost is that the works in [1] and [29]–[31] proposed multi-
view spectral clustering methods under the RPCA framework.
The main idea of them is that they separated the transition
probability matrix or tensor into a low-rank part and a sparse
term. The main differences are that the former two learned
a shared low-rank matrix, while the last two pursued a low-
rank tensor. Generally speaking, in these methods, the affinity
matrix is constructed by two separated steps [32], [33], that
is, the representation learning and affinity construction are
deliberately separated for easy handling. However, they may
suffer from two major limitations: 1) most existing multiview
clustering methods first learn the representations {Z (v)}M

v=1
by different regularizers, such as the nuclear norm [7], [9],
sparseness [29], and block-diagonal prior [34], and then con-
structs the transition probability matrix S by averaging all
representations, i.e., S = �M

v=1(|Z (v)| + |Z (v)T |)/2. Since this
two-step paradigm may lead to suboptimal results in both
stages, the optimal transition probability matrix cannot be
ensured for the subsequent clustering and 2) there are two
inherent characteristics, i.e., the nonnegativity and symmetry
of the transition probability matrix, which are fully ignored in
the first step. Thus, it cannot avoid negative coefficients [35].
To the best of our knowledge, there are no exiting works to
address the above-mentioned two limitations simultaneously.

In this article, we propose a novel multiview spectral
clustering via learning an adaptive transition probability matrix
(MCA2M) based on two concerns: 1) high connection between
the spectral clustering and Markov chain and 2) the one-
step strategy. The first motivation can greatly reduce the
computational cost since matrix inverse operation with the
heavy cost is avoided at each iteration. While the second
one aims to directly learn an adaptive transition probability
matrix to better uncover the true similarity between data
points instead of the two-step paradigm. This is quite different
from those methods in [1], [7], [9], and [29] all of which
followed the two-step paradigm to construct the final affinity
matrix. In addition, MCA2M learns the transition probability

matrix learned with the nonnegativity and symmetry through-
out the learning process. This is also different from [1], [7],
[9], and [29] which use postprocessing to ensure nonneg-
ativity and symmetry. In addition, our MCA2M consumes
low computation costs by inheriting the benefits of RPCA
framework. The flowchart of the proposed MCA2M is shown
in Fig. 1.

The main contributions of this article are summarized as
follows.

1) Under the RPCA framework, we proposed a unified
model for the multiview spectral clustering method
by directly learning an adaptive transition probability
matrix (MCA2M). The nonnegativity and symmetry of
the transition probability matrix are explicitly preserved
without performing any postprocessing as previous low-
rank tensor approximation-based clustering methods
have to do.

2) Our MCA2M jointly optimizes the transition probability
tensor and the transition probability matrix to better dis-
cover the true similarity between data points. The low-
rank constraint was imposed on the transition probability
tensor, which provides feedback to adjust the learned
transition probability matrix.

3) An effective algorithm is designed to solve the MCA2M
model based on the alternating direction method of mul-
tipliers (ADMMs). Extensive experiments are conducted
on eight real-world databases with different applications.
These results have demonstrated the superiority of the
proposed MCA2M over many state-of-the-art clustering
methods.

The rest of this article is structured as follows. Section II
briefly reviews the related works for multiview clustering.
Some preliminaries are summarized in Section III. The
MCA2M method is introduced and optimized based on
ADMMs in Section IV. We evaluate the performance of the
proposed method in Section V and conclude the whole article
in Section VI.

II. RELATED WORK

The related works can be roughly categorized into two
groups: LRR-based multiview subspace clustering methods
and RPCA-based multiview spectral clustering ones. Several
representative examples of these two groups and the proposed
MCA2M are summarized in Table I.

A. LRR-Based Multiview Subspace Clustering Methods

The LRR-based clustering methods are based on the self-
representation property, that is, each data point can be linearly
represented by the other data points in the same subspace.
SSC [18] and LRR [16] solved the single-view cluster-
ing (SVC) task by seeking a sparse representation and a low-
rank one over the data itself, respectively. Instead of a two-step
paradigm to construct the final similarity matrix, Yin et al. [33]
proposed a unified model to learn the affinity matrix and
representation simultaneously. Considering the high spatial
structures of 2-D images, the study in [38] proposed a tensor
LRR method for subspace clustering. To handle the multiview
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Fig. 1. Flowchart of the proposed MCA2M method. Given multiview features {X (i)}, MCA2M first computes the similarity matrices {A(i)} and their transition
probability matrices {P(i)}, as shown in (a). By storing the i th P(i) as the ith frontal slice of a third-order transition probability tensor P , as shown in (b),
it is decomposed into a “clean” Z and an error tensor E to explore the high-order correlations among multiple views and overcome the noise interference.
To well explore the correlations between Z and transition probability matrix S, MCA2M learns an adaptive S for spectral clustering.

TABLE I

REPRESENTATIVE EXAMPLES OF CLUSTERING METHODS AND OUR PROPOSED MCA2M

features, Zhang et al. [9] performed LRR on each view jointly
and learned a representation tensor. Xie et al. [7], [39] used
the tensor nuclear norm (TNN), rather than the sum nuclear
norm in [9] to explore the low-rankness of the representation
tensor. Yang et al. [40] took the view specification and
consensus structure into account for multiview clustering,
where the latter was regularized by block diagonal regulariza-
tion [34]. Unlike the above-mentioned methods which learn
the similarity matrix from the original multiview features,
Zhang et al. [37] proposed to learn the latent representation
of multiview features which are used to construct a com-
mon coefficient matrix by LRR. Other LRR-based methods
include [41] and [42].

B. RPCA-Based Multiview Spectral Clustering Methods

Different from the above-mentioned LRR-based methods,
the second class exploited the RPCA model (also known as

low-rank and sparse decomposition) to separate the represen-
tation into a low-rank part and a sparse component [43]. For
example, Kang et al. [36] proposed a robust graph learning
method for SVC. It is intractable to extend [36] to handle the
multiview features since the dimensions of multiple features
are usually unequal. To solve this problem and relieve the
high complexity of LRR-based clustering methods, the stud-
ies in [29] and [1] presented two robust multiview spectral
clustering methods, as shown in the fourth and eighth lines
of Table II, respectively. The study in [30] proposed an
error-robust multiview spectral clustering method to address
different types of errors in multiview features.

In summary, the proposed MCA2M differs significantly
from the aforementioned works. First, one common bottleneck
of the above-mentioned LRR-based methods [7], [9], [37] is
the high computational cost since they cannot avoid the matrix
inversion operation with O(n3) complexity, where n denotes
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TABLE II

BASIC NOTATIONS AND THEIR DESCRIPTIONS

the number of all samples. They are not suitable for large-
scale applications. Second, most of them followed the two-step
paradigm to construct the affinity matrix, which may not be the
optimal one for data clustering and lead to suboptimal results.
In addition, two essential characteristics i.e., nonnegativity
and symmetry are usually ignored in the construction of the
affinity matrix. The proposed MCA2M has three advantages:
1) the proposed MCA2M inherits the advantage of the RPCA
framework to avoid the matrix inversion; 2) unlike the two-step
paradigm to construct the affinity matrix, MCA2M learns the
transition probability matrix directly; and 3) the proposed
MCA2M preserves the nonnegativity and symmetry of the
transition probability matrix in the learning processing, rather
than resorting to postprocessing.

III. PRELIMINARY

In this section, we aim to briefly review the background
of the tensor singular value decomposition (t-SVD)-based
TNN (see Definition 2) and the Markov chain-based spectral
clustering.

A. T-SVD-Based Tensor Nuclear Norm

For easy representation, some basic notations are shown
in Table II. In the following, we first introduce several opera-
tors that are used to define the t-SVD-TNN in (1). For a tensor
X ∈ R

M×N×K , its block diagonal matrix bdiag(X ) and block
circular matrix bcirc(X ) are defined as

bdiag(X ) =

⎡
⎢⎢⎢⎣
X (1)

X (2)

. . .

X (K )

⎤
⎥⎥⎥⎦

bcirc(X ) =

⎡
⎢⎢⎢⎣
X (1) X (M) · · · X (2)

X (2) X (1) · · · X (3)

...
...

. . .
...

X (M) X (M−1) · · · X (1)

⎤
⎥⎥⎥⎦.

The block vectorization is defined as bvec(X ) =
[X (1); . . . ;X (K )]. The inverse operations of bvec and
bdiag are defined as bvfold(bvec(X )) = X and
bdfold(bdiag(X )) = X , respectively. Let Y ∈ R

N×J×K .
The t-product X ∗ Y is an M × J × K tensor, X ∗ Y =
bvfold(bcirc(X ) ∗ bvec(Y)). The transpose of X is X T ∈
R

N×M×K by transposing each of the frontal slices and then

reversing the order of transposed frontal slices 2 through K .
The identity tensor I ∈ R

M×M×K is a tensor whose first
frontal slice is an M × M identity matrix and the rest frontal
slices are zero. A tensor X ∈ R

M×M×K is orthogonal if it
satisfies X T ∗ X = X ∗ X T = I.

Definition 1 (t-SVD): Given X , its t-SVD is defined as

X = U ∗ D ∗ VT

where U ∈ R
M×M×K and V ∈ R

N×N×K are orthogonal
tensors, and D ∈ R

M×N×K is an f-diagonal tensor. Each of
its frontal slices is a diagonal matrix.

Definition 2 (t-SVD-TNN): The t-SVD-TNN of a tensor
X ∈ R

M×N×K , denoted as �X��, is defined as the sum of
singular values of all the frontal slices of X̂ , that is

�X�� =
min{M,N}	

i=1

K	
k=1

|D̂(i, i, k)|. (1)

B. Markov Chain-Based Spectral Clustering

The main idea of spectral clustering is that each data
point is represented as a vertex and pairwise similarities are
measured by edges, and then the spectral clustering transforms
the clustering task into a graph partition problem. Let G =
(V , E, A) be a weighted graph where V is the vertex set,
E is the edge set, and A is the similarity matrix. Suppose
X = [x1, x2, . . . , xn] ∈ R

d×n is the feature matrix, where
d is the dimension of feature vector and n is the number
of samples. One intuitive way to define the similarity Ai, j

between xi and x j is to use Gaussian kernels, i.e., Ai, j =
exp(−((�xi − x j�2

2)/σ
2)), where σ 2 is the standard deviation.

The overall procedure of the Markov chain-based spectral
clustering method is summarized in Algorithm 1. For more
details of the Markov chain-based spectral clustering theory,
please refer to [1] and [44].

Algorithm 1 Markov Chain-Based Spectral Clustering
Input: Feature matrix X = [x1, x2, . . . , xn];
Output: Assigned classes of all data points;
1: Compute the similarity matrix Ai, j = exp(−�xi −x j �2

2
σ 2 );

2: Define a random walk over the weighted graph G =
(V , E, A) with transition probability matrix P = D−1 A ∈
R

n×n such that it has a unique stationary distribution π
satisfying π = Pπ , D is a diagonal matrix with Dii =
� j Ai j ;

3: Construct the normalized Laplacian matrix L =
(�

1
2 P�− 1

2 +�− 1
2 PT �

1
2 )/2, where � is a diagonal matrix

with �ii = π(i);
4: Compute the r smallest generalized eigenvectors U =

[u1, . . . , ur ] satisfying Lu = λDu;
5: Cluster U by k-means and assign each data point into a

specific class.

IV. PROPOSED METHOD

In this section, we propose a novel multiview spectral
clustering method by learning an adaptive affinity matrix

Authorized licensed use limited to: Universidade de Macau. Downloaded on August 12,2021 at 06:49:40 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: ADAPTIVE TRANSITION PROBABILITY MATRIX LEARNING FOR MULTIVIEW SPECTRAL CLUSTERING 5

in Section IV-A. Then, we solve the optimization model by
the ADMMs. The main idea of MCA2M is that we want
to learn a nonnegative and symmetric transition probability
matrix without any postprocessing.

A. Objective Function of the Proposed MCA2M

Given a database with n samples and M features (views)
{X (v)}M

v=1, X (v) = [x (v)
1 , . . . , x (v)

n ] ∈ R
dv×n denotes the feature

matrix and dv is the feature dimension of the vth view. For
each view, we first compute the similarity matrix A(v) ∈ R

n×n

by A(v)
i, j = exp(−((�x (v)

i − x (v)
j �2

2)/σ
2)) and then construct

the transition probability matrix P(v), v = 1, 2, . . . , M .
RMSC [29] learns only the shared common transition prob-
ability matrix P̂ among all views. One obvious shortcoming
is that some specific information underlying different views
may be ignored. Unlike RMSC, we hope to pursue high-order
correlation among all views. As shown in Fig. 1(b), we store
all P(v) as a frontal slice of the third-order tensor P ∈ R

n×n×M .
Since the original samples usually are corrupted by noises
and outliers, the multiview features are also erroneous. The
transition probability matrices are perturbed. To alleviate the
noise perturbation, we consider to separate the tensor P into
a clean tensor Z and an error tensor E , i.e., P = Z + E .
Considering that the sample number is usually larger than the
cluster number, the tensor Z has the low-rank property and
we adopt the t-SVD-TNN defined in (1) to depict the low
rankness. Different from the existing methods [1], [7], [9],
which construct the transition probability matrix S by two
separate steps, we select to directly learn an adaptive S.
In addition, two essential characteristics of the transition prob-
ability matrix are nonnegativity and symmetry since each entry
is to measure the similarity between samples xi and x j . In this
article, we pursue to learn an adaptive transition probability
matrix with nonnegativity and symmetry. Incorporating the
above-mentioned concerns into a unified model, the proposed
MCA2M model is formulated as follows:

min
Z,E,S

�Z�� + α�E�2,1 + β

M	
v=1







|Z (v)| + |Z (v)T |

2
− S







2

F

s.t. P = Z + E ∀i Si ≥ 0, ST
i 1 = 1

E = [E (1); E (2); . . . ; E (M)] (2)

where α and β are nonnegative tradeoff parameters to balance
the effects of all terms. The last constraint of (2) is to transform
the error tensor E ∈ R

n×n×M into an error matrix E ∈ R
n2×M

by vertically concatenating all frontal slices along the column
direction.

Remarks.

1) Different from the LRR-based clustering methods
[7], [9], [24], [37], which are usually based on the self-
representation property, the proposed MCA2M model
considers P = Z + E such that the matrix inversion
operation with high computational cost can be fully
avoided.

2) The constraint Si ≥ 0 has two implications: when
samples xi and x j locate different groups, Si, j = 0;

when they belong to the same group, Si, j > 0. ST
i 1 = 1

aims to guarantee the probability property of Si .
3) Borrowing the last term of Eq. (2) and the second

remark, we can yield a nonnegative and symmetric S
to better uncover the true affinity between data points.

4) The proposed MCA2M adopts the l2,1-norm to alleviate
the noise perturbation.

5) The proposed MCA2M model is highly inspired by [1],
which learns the transition probability tensor Z first and
then learns the transition probability matrix S sequen-
tially. This two-step paradigm is prone to yield a sub-
optimal S. To overcome this limitation, (2) incorporates
the one-step strategy to jointly learn Z and S in a mutual
reinforcement manner such that they can help each other.

B. Optimization of the Proposed MCA2M

It may be difficult to solve (2) directly by ADMM since
variable Z is coupled by the first term, the third item, and the
first constraint of (2). To solve this challenging optimization
model, we first split the variable Z by introducing a new
auxiliary variable H and equivalently reformulate (2) as the
following optimization problem:

min
H,Z,E,S

�H�� + α�E�2,1 + β

M	
v=1







|Z (v)| + |Z (v)T |

2
− S







2

F

s.t. P = Z + E ∀i Si ≥ 0, ST
i 1 = 1

E = [E (1); E (2); . . . ; E (M)], H = Z. (3)

The main idea of the ADMM technique is to solve a con-
strained problem by its unconstrained augmented Lagrangian
function and then iteratively update each variable by keeping
other variables fixed at their latest values [45]. The uncon-
strained augmented Lagrangian function is given by

Lμ(H,Z, E, S; 	,
)

= β

M	
v=1







|Z (v)| + |Z (v)T |

2
− S







2

F

+ �H�� + α�E�2,1 + �
,H − Z� + μ

2
�H − Z�2

F

+ �	,P − Z − E� + μ

2
�P − Z − E�2

F (4)

where 	 and 
 are two Lagrangian multipliers of size
N × N × M . μ is the penalty parameter. �·� denotes the
standard trace inner product. Following ADMM, all variables
are iteratively updated as follows:

Hk+1 = arg min
H

Lμk (H,Zk, Ek, Sk; 	k,
k) (5)

Zk+1 = arg min
Z

Lμk (Hk+1,Z, Ek, Sk ; 	k,
k) (6)

Ek+1 = arg min
E

Lμk (Hk+1,Zk+1, E, Sk ; 	k,
k) (7)

Sk+1 = arg min
S

Lμk (Hk+1,Zk+1, Ek+1, S; 	k,
k). (8)

Specifically, given the kth update, the k +1th iteration of each
subproblem is presented as follows.

1) Subproblem H: The optimization of (5) with respect to
H is

arg min
H

�H�� + μk

2





H −
�
Zk − 
k

μk

�




2

F

. (9)
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Denoting Fk = Zk − (
k/μk), the closed-form solution
of (9) can be obtained by the tensor tubal-shrinkage
operator [7]

Hk+1 = C V
ρk

(Fk) = U ∗ C V
ρk

(D) ∗ VT (10)

where Fk = U ∗ D ∗ VT is the t-SVD of Fk , and
C(V/ρk)(D) = D ∗ J , in which J is an f-diagonal
tensor whose diagonal element in the Fourier domain
is J (i, i, k) = max{1 − ((V/ρk)/(D(i, i, k))), 0}.

2) Subproblem Z: The optimization of (6) with respect to
Z is written as

arg min
Z

β

M	
v=1







|Z (v)| + |Z (v)T |

2
− Sk







2

F

+ μk

2
�Z − Ak�2

F + μk

2
�Z − Bk�2

F

= arg min
Z

β

M	
v=1







|Z (v)| + |Z (v)T |

2
− Sk







2

F

+ μk





Z − Ak + Bk

2






2

F

(11)

where Ak = P − Ek + (	k/μk) and Bk = Hk+1 +
(
k/μk). It is intractable to directly solve (11) due to
the absolute value operator as shown in the first term.
However, one important observation is that the other
of (11) is free to the absolute value operator [46]. Thus,
the elements of Zk+1 must have the same sign as the
ones in ((Ak + Bk)/2). Inspired by this observation,
Zk+1 can be obtained by

Zk+1 = Ẑk+1 ⊗ sign

�Ak + Bk

2

�
(12)

and ⊗ represents the elementwise multiplication; Ẑk+1

is the closed-form solution of the following optimization
problem:

min
Ẑ

β

M	
v=1





Ẑ (v) − Sk + ST
k

2






2

F

+ μk





Ẑ −




Ak +Bk

2












2

F

.

(13)

Specifically, (13) can be separated into M independent
minimization problems and the vth problem is

min
Ẑ

β





Ẑ (v) − Sk + ST
k

2






2

F

+ μk






Ẑ −







A(v)
k + B(v)

k

2














2

F

= min
Ẑ

(β + μk)






Ẑ (v)
k − β

�
Sk +ST

k

� + μk |Ak + Bk |
2 ∗ (β + μk)







2

F

.

The closed-form solution Ẑ (v)
k+1 is

Ẑ (v)
k+1 = β

�
Sk + ST

k

� + μk |Ak + Bk |
2 ∗ (β + μk)

. (14)

3) Subproblem E: The optimization of (7) with respect to
E is written as

arg min
E

α

μk
�E�2,1 + 1

2
�E − Ck�2

F , (15)

Algorithm 2 MCA2M for Multiview Spectral Clustering

Input: multiview features: X (v) (v = 1, 2, · · · , V ); parame-
ters: α, β;

Initialize: H0, Z0, E0, 	0, 
0 initialized to 0; ρ0 = 10−3,
λ = 2, tol = 10−7, k = 0

1: Compute L(i) and P(i) via Steps 2 and 3 in Algorithm 1;
2: while not converged do
3: Update Hk+1 via Eq. (10);
4: Update Zk+1 via Eq. (12);
5: Update Ek+1 via Eq. (17);
6: Update Sk+1 via Eq. (18);
7: Update 	k+1, 
k+1 and μk+1 via Eqs. (19), (20),

and (21), respectively;
8: Check the convergence conditions
9:

max

� �P − Zk+1 − Ek+1�∞
�Hk+1 − Zk+1�∞

�
≤ tol,

10: end while
Output: Adaptive transition probability matrix Sk .

where Ck = P − Zk+1 + (	k/μk). After vertically con-
catenating together along the column of Ck into a matrix
Ck = [C(1)

k ; C(2)
k ; . . . ; C(M)

k ], (15) is reformulated as

arg min
E

α

μk
�E�2,1 + 1

2
�E − Ck�2

F , (16)

and the j th column of Ek+1 is
⎧⎨
⎩

�Ck(:, j)�2 − α
μk

�Ck(:, j)�2
Ck(:, j), if

α

μk
< �Ck(:, j)�2

0, otherwise.

(17)

4) Subproblem S: The optimization of (8) with respect to
S is written as

arg min
S

M	
v=1






S −


Z (v)

k+1



 + 

Z (v)T

k+1




2







2

F

s.t. ∀i Si ≥ 0, ST
i 1 = 1. (18)

It is easy to see that (18) can be separated into n
independent problems and each of them is a proximal
operator problem with a probabilistic simplex constraint.
The projection algorithm [47], [48] was adopted to
obtain the closed-form solution.

5) Subproblem 	, 
 and μ: Two Lagrangian multipli-
ers 	k+1, 
k+1 and the penalty parameter μk+1 are
updated by

	k+1 = 	k + μk(P − Zk+1 − Ek+1) (19)


k+1 = 
k + μk(Hk+1 − Zk+1) (20)

μk+1 = min{λ ∗ μk, μmax} (21)

where λ is set to 2. Equation (21) is known as a
continuation scheme [49]. The details of the MCA2M
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algorithm are given in Algorithm 2. The convergence
conditions of Algorithm 2 are defined as

max

� �P − Zk+1 − Ek+1�∞
�Hk+1 − Zk+1�∞

�
≤ tol (22)

where tol > 0 is a predefined tolerance. Once the
adaptive transition probability matrix S is yielded by
Algorithm 2, the final clustering results are obtained
by replacing the transition probability matrix P in the
second step of Algorithm 1 with the learned S.

V. EXPERIMENTS

To empirically investigate the performance of the pro-
posed MCA2M, extensive experiments on eight real-world
and challenging multiview databases over three SVC methods
and seventeen multiview clustering ones. All experiments are
conducted on an Intel Core i3 3.50-GHz Win7 workstation
with 16-GB memory.

A. Experimental Settings

1) Databases: The details of all test databases are described
as follows.

1) Still-DB [50]: It is a still image database for action
recognition. There are 467 images corresponding to six
different actions. Three types of features, including 200d
sift bow, 200d color sift bow, and 200d shape context
bow, are exploited in still-DB.

2) BBCSport:1 It is a news story database which has 544
documents from the BBC sport website. This database
has two different types of features with five classes.

3) UCI Digits:2 It is a handwritten digit database from
the UCI repository. There are 2000 examples in total
and ten classes (handwritten digits 0–9). Three fea-
ture sets, including 76d Fourier coefficients of the
character shapes, 216d profile correlations, and 6d
Karhunen–Love coefficients are extracted.

4) 100leaves:3 It is a plant species leaves database with
1600 samples in total (100 categories). Three features,
including shape descriptor, fine-scale margin, and texture
histogram, are exploited.

5) COIL-20:4 It is an object database which contains
1440 images with 20 object categories. We employed
three different types of features including 1024d inten-
sity, 3304d LBP, and 6750d Gabor.

6) Flowers:5 It is a flower database which contains
1360 samples in total with 17 flower categories.
We extracted three different visual features, including
color, texture, and shape, with the same size 1360d .

7) MITIndoor: It is a scene database which includes
5360 images. All images belong to 67 categories and
three types of handcrafted visual features are extracted.

1http://mlg.ucd.ie/datasets/segment.html
2http://archive.ics.uci.edu/ml/datasets/Multiple+Features
3https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+

data+set
4http://www.cs.columbia.edu/CAVE/software/softlib/
5http://www.robots.ox.ac.uk/vgg/data/flowers/

TABLE III

SUMMARY OF ALL REAL-WORLD MULTIVIEW DATABASES

Fig. 2. Samples of (a) UCI digits, (b) 100leaves, (c) COIL-20, and
(d) Flowers.

8) Caltech101: It is an object database which has 8677
object images with 101 categories. The same to [7], four
types of features are selected.

All databases are briefly summarized in Table III and some
examples are shown in Fig. 2.

2) Competitors: The proposed MCA2M method is com-
pared with the following state-of-the-art clustering methods:

1) Single-View Competitors: SPC [51] achieves the best
result among all views via standard spectral clustering;
SSC [18] achieves the best result among all views via
SSC; LRR [16] achieves the best result among all views
via LRR.

2) Multiview Competitors: RMSC [29] recovers a shared
low-rank transition probability matrix via low-rank and
sparse matrix decomposition; DiMSC [52] utilizes the
Hilbert Schmidt independence criterion as a diversity
term to explore the complementarity of multiview fea-
tures. LT-MSC [9] exploits the low-rank tensor con-
straint for multiview clustering. MVCC [53] uses the
concept of factorization with local manifold regular-
ization. DSemi-NMF [54] adopts the deep nonnegative
matrix factorization to capture the hidden information.
MLAN [55] selects the adaptive neighbors for mul-
tiview clustering. ECMSC [56] takes the exclusivity
and consistency of multiview features into consider-
ation for multiview clustering. t-SVD-MSC [7] uses
the multirank tensor minimization to capture the high-
order correlation. ETLMSC [1] learns an essential
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TABLE IV

CLUSTERING RESULTS (MEAN ± STANDARD DEVIATION) ON STILL-DB DATABASE (α = 0.0007, β = 0.007)

transition probability matrix tensor for multiview
clustering. LMSC [37] uses a latent representation
for multiview clustering. GMC [57] is a graph-based
multiview clustering. GLTA [24] learns the repre-
sentation tensor and affinity matrix simultaneously.
SM2SC [40] refers to split multiplicative multiview
subspace clustering. SCMV-3DT [2] uses the tensorial
t-product representation. MCGC [14] learns a consensus
graph with minimizing disagreement between different
views. EMVC [30] incorporates the error learning into
RMSC. LMVSC [28] refers to the large-scale multiview
subspace clustering with linear complexity.

Note that DiMSC, LT-MSC, MVCC, ECMSC, t-SVD-MSC,
LMSC, GLTA, SM2SC, and SCMV-3DT are LRR-based mul-
tiview clustering methods. RMSC and ETLMSC are represen-
tatives of RPCA-based multiview clustering methods.

For the parameter setting, we follow the original articles.
Specifically, the details are summarized as follows: SSC and
LRR search parameters in the range [0.01, 10]. One trade-
off parameter of RMSC is selected from [0.005, 1]. Two
parameters of DiMSC range in [0.01, 0.03] and [20:20:180].
LT-MSC selects the parameter in [0.01, 100]. In MVCC,
the first two parameters are set to 5 and 100, while the
other two ones range in [0.001, 1000], respectively. The
layer sizes of DSemi-NMF are set to {[100, 50], [500, 50],
[500, 200]} and other parameters are defaulted. MLAN has
one random parameter ranging in [1, 30]. We set three para-
meters of ECMSC as [0.1, 1], [0.1, 1], and 1.2, respectively.
T-SVD-MSC selects one parameter from the interval [0.1, 2].
ETLMSC varies in the range of [0.008, 0.1]. The dimensions
of the latent representation and the regularization parame-
ter of LMSC are searched from the range [10:10:100] and
[0.01, 0.1, 1, 10, 100], respectively. GMC sets the tradeoff

parameter as 1. Two free parameters of GLTA are selected
from the interval [0.001, 1] and [0.01, 100] respectively.
SM2SC tunes three parameters in the range [0.1, 0.15, 0.2,
0.3, 0.4, 0.5, 1, 10, 40, 100], [0.1, 0.5, 1, 1.5, 2], and [0.05,
0.1, 0.4, 1, 5]. There are three free parameters in SCMV-3DT
are set to different values from [10−5, 10−4, . . . , 10]. MCGC
first learns each viewgraph by setting k neighbor and then
introduces a tradeoff parameter to learn the consensus graph.
Two parameters are selected from [3:1:15] and [0.6:5:50].
EMVC selects two parameters from [10−3, 10−2, . . . , 104].
LMVSC searches anchor number in the range [k, 50, 100] and
one parameter in [0.001, 0.01, 0.1, 1, 10], where k denotes the
number of clusters.

3) Evaluation Measures: Following [1], [7], and [24],
we use six common evaluation measures to estimate the clus-
tering performance of all methods. They are accuracy (ACC),
normalized mutual information (NMI), adjusted rank index
(AR), F-score, Precision, and Recall. For each evaluation mea-
sure, a higher value stands for better clustering performance.
Besides, they measure different properties of clustering, and
thus, give a comprehensive evaluation of all methods. For all
competing methods, we follow their parameter settings and
record their best results. As for the parameter setting of the
proposed MCA2M, one can refer to Section V-B.

B. Clustering Results and Analysis

In this section, the performance comparisons of all cluster-
ing methods are first given. Several aspects of the proposed
MCA2M, including parameter selection, convergence analysis,
and running time, are also reported.

1) Performance Comparison: Tables IV–XI report the
detailed clustering performance comparisons of all meth-
ods. For a fair evaluation, we run ten repetitions for each
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TABLE V

CLUSTERING RESULTS (MEAN ± STANDARD DEVIATION) ON BBCSPORT DATABASE (α = 0.02, β = 0.005)

TABLE VI

CLUSTERING RESULTS (MEAN ± STANDARD DEVIATION) ON UCI-DIGITS DATABASE (α = 0.007, β = 0.005)

experiment of all methods and report their average values with
standard deviations. The bold and underlined numbers denote
the best and second-best results, respectively. In Tables IV–X,
all competing methods can be roughly categorized into four
groups: SVC, multiview graph clustering, LRR-based multi-
view subspace clustering, and RPCA-based multiview spectral
clustering. Note that MCA2M-Z and MCA2M-S denote the
results by variables Z and S in Eq. (2), respectively.

One can see that the proposed MCA2M method almost
consistently outperforms other methods including the recently

proposed t-SVD-MSC, ETLMSC, GLTA, and SM2SC, espe-
cially for COIL-20 and Still-DB databases. For example,
MCA2M improve around 6.5% and 3.0% ACC over the
runner-up on COIL-20 and Still-DB databases, respectively.
This indicates that the transition probability matrix i.e., S
learned from the proposed MCA2M is effective for the mul-
tiview clustering task. Single-view versus Multiview: In most
cases, most of the multiview clustering methods including the
proposed MCA2M perform better than the three SVC methods.
Specifically, all multiview clustering methods achieve at least
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TABLE VII

CLUSTERING RESULTS (MEAN ± STANDARD DEVIATION) ON 100LEAVES DATABASE (α = 0.005, β = 0.009)

TABLE VIII

CLUSTERING RESULTS (MEAN ± STANDARD DEVIATION) ON COIL-20 DATABASE (α = 0.005, β = 0.013)

1.2% ACC values over SPCbest on the COIL-20 database.
The reason is that most SVC methods explore only the
pairwise correlation or latent representation from the matrix
aspect. This means that high-order correlations among multiple
views such as the view-specific information cannot be well
exploited. This observation is consistent with the conclusion
in [2] and [7]. However, there exists a performance fluctuation
of some multiview clustering methods. For instance, at least
4 multiview clustering methods yield inferior performance

than SVC methods on BBCSport, Flowers, Still-DB, and
MITIndoor databases. LRR-based Multiview Clustering vs
RPCA-based Multiview Clustering: In general, these meth-
ods based on tensor optimization may have superior clus-
tering performance than ones based on matrix optimization.
Compared with ETLMSC, our MCA2M yields better results on
most databases. This demonstrates that the one-step strategy
can improve the quality of the transition probability matrix.
In addition, MCA2M-S performs better than MCA2M-Z .
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TABLE IX

CLUSTERING RESULTS (MEAN ± STANDARD DEVIATION) ON FLOWERS DATABASE (α = 0.003, β = 0.009)

TABLE X

CLUSTERING RESULTS (MEAN ± STANDARD DEVIATION) ON MITINDOOR DATABASE (α = 0.004, β = 0.001)

This is because the nonnegativity and symmetry of S can be
guaranteed in (2).

2) Parameter Selection: The standard deviation σ 2 of
Gaussian kernels for each view is set to the median of
the pairwise Euclidean distances. There are two regularized
parameters α and β affecting the performance of the proposed
MCA2M. To investigate the influence of α and β, we select
α and β from [0.0005, 0.01] and [0.001, 0.01], respectively.
We report the ACC values with respect to different combina-
tions of α and β on 100leaves, COIL-20, Flowers, and Still-DB
databases in Fig. 3. We can conclude that the proposed
MCA2M can achieve promising ACC values by selecting
α ∈ [0.0005, 0.01] and β ∈ [0.001, 0.01].characterize Another

parameter is σ which aims to characterize the correlations
among data points. Thus, we conducted new experiments with
different σ and reported results in Fig. 4. One can see that
when we select the best σ , the performance of MCA2M may
be further improved. For simplicity, we set σ as the average
Euclidean distance of each view feature.

3) Convergence Analysis: It is intractable to guarantee
the theoretical convergence of the proposed MCA2M. This
is because there are three variables in (2), i.e., Z, E, S.
In addition, the objective function of (2) is nonconvex due to
the absolute operation. To the best of our knowledge, the con-
vergence theory is still an open problem. Fig. 5 reports the
relative error of the stopping criterion defined in (22), ACC,
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TABLE XI

CLUSTERING RESULTS (MEAN ± STANDARD DEVIATION) ON CALTECH101 DATABASE (α = 0.005, β = 0.002)

Fig. 3. Parameter tuning with respect to α and β on (a) 100leaves,
(b) COIL-20, (c) Flowers, and (d) Still-DB databases.

Fig. 4. Influence of σ for Gaussian kernel (ACC and NMI) on four databases.

and NMI values of MCA2M versus iterations on 100leaves,
COIL-20, Flowers, and Still-DB databases. One can see that
with the iteration increasing, the relative errors of MCA2M
decrease and MCA2M converges steadily within 25 iterations.
We also observe that at the first several iterations, ACC and
NMI values of MCA2M are much lower and after 10 iterations,
MCA2M achieves promising ACC and NMI values. This also
demonstrates the good empirical convergence of the proposed
MCA2M.

4) Complexity and Running Time: It is tractable to update
variables Z and S. The main computation bottleneck of the
proposed MCA2M is to update variables H and E . Specifi-
cally, the fast Fourier transformation (FFT), inverse FFT, and
singular value decomposition are performed for updating H,

Fig. 5. Relative errors, ACC, and NMI versus iterations on (a) 100leaves,
(b) COIL-20, (c) Flowers, and (d) Still-DB databases.

and thus, it costs O(Mn2 log(n) + M2n2). When updating
E , the computation cost is O(Mn2). Therefore, the whole
complexity of MCA2M is O(Mn2 log(n) + M2n2) which
is the same as that of ETLMSC [1]. Table XII displays
the average running times and complexities of eight rep-
resentative multiview clustering methods on all databases.
On the MITIndoor database, DiMSC and GLTA run out of
memory in the current platform since they both need to
solve the Sylvester equation and perform matrix inversion.
Thus, we do not report their running times on the MITIndoor
database in Table XII. Generally speaking, ETLMSC costs the
shortest running time and our MCA2M performs the second-
best but achieves better performance than all other methods.
As aforementioned, the LRR-based multiview clustering meth-
ods, such as LT-MSC, t-SVD-MSC, LMSC, and GLTA are
highly time consuming. This is mainly because they are
inevitable to perform the matrix inversion with O(n3) cost.
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TABLE XII

AVERAGE RUNNING TIME (IN SECONDS) ON ALL DATABASES

Fig. 6. Visualization of the embedding results on Flowers database (a) view 1,
(b) view 2, (c) view 3, (d) t-SVD-MSC, (e) ETLMSC, and (f) MCA2M.

5) Visualization: In this section, we aim to investigate the
quality of the learned graph by t-SVD-MSC, ETLMSC, our
MCA2M, and multiview features. Following [40], we perform
the Laplacian embedding method on the transition probability
matrix S learned by our MCA2M to yield the leading l
eigenvectors U ∈ R

n×l , where n and l denote the numbers of
samples and clusters, respectively. Then, we show 2-D visu-
alizations of all features and U by using the t-distributed sto-
chastic neighbor embedding (t-SNE) algorithm [58] in Fig. 6.
We can see that compared with Fig. 6(a)–(e), which are
obtained by performing t-SNE on each view, t-SVD-MSC and
ETLMSC, it is easier to separate all data points by MCA2M.
This observation is also consistent with the clustering results,
as shown in Tables IV–XI.

VI. CONCLUSION

In this article, we put forward a novel multiview spectral
clustering method by learning an adaptive transition prob-
ability matrix (MCA2M). Based on the Markov chain the-
ory, the multiview features were used to construct multiview
transition probability matrices. These matrices were adopted
to yield a transition probability tensor to explore the high-
order correlations of multiple features. Unlike most existing
methods which learned the final affinity matrix in two separate
steps, MCA2M learns an adaptive transition probability matrix
directly to better uncover the true relationship between data
points. To evaluate the effectiveness and efficiency of the
proposed MCA2M, eight real-world databases with different
applications were used and the experimental results have
demonstrated the superiority and efficiency of MCA2M over
many state-of-the-art clustering approaches. In the future,

we will extend the proposed method for multiview learning
and classification tasks.
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