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ABSTRACT

In image analysis, image samples from multiple sources may
contain noisy features. Due to the difficulty of obtaining la-
bel information and complex intrinsic structures, performing
unsupervised feature selection on multi-view data is a chal-
lenging problem. Most existing unsupervised multi-view fea-
ture selection methods may explore only the inter-view cor-
relations at the view-level, and ignore the explicit correla-
tions between features across multiple views. In this paper,
we propose a tensor-based unsupervised multi-view feature
selection (TUFS) method. Specifically, TUFS efficiently ex-
plores the full-order interactions among multi-view data with-
out physically building a tensor. Besides, multiple local ge-
ometric structures for different views are constructed to fa-
cilitate unsupervised feature selection. To solve the proposed
model, we design an alternating optimization algorithm. Ex-
periments and comparisons on three image datasets demon-
strate that the proposed TUFS yields better performance over
the state-of-the-art methods.

Index Terms— Multi-view learning, unsupervised fea-
ture selection, tensor factorization, image recognition

1. INTRODUCTION

In many applications, the data to be analyzed is naturally
represented by multiple representations from heterogeneous
sources. For example, image data can be described by differ-
ent feature descriptors, e.g., wavelet texture (WT), edge direc-
tion histogram (EDH) and color moment (CM). Multi-view
learning is a typical scenario [1], which focuses on learning
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damental Research Funds for the Central Universities, China University of
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from data represented by multiple feature sets. The raw da-
ta from different views may contain noisy, irrelevant and re-
dundant features, which may degrade the accuracy of image
recognition. Due to the difficulty of obtaining the label infor-
mation, how to select representative features from multi-view
data in an unsupervised manner is a challenging problem.

In the literature, existing methods of unsupervised multi-
view feature selection mainly rely on two different strategies,
including the concatenating and cross-view strategies. Meth-
ods in the first strategy directly employ traditional single-view
models by concatenating all features from multiple views as
the input [2]. Representative algorithms include Laplacian
score (LapScor) [3], multi-cluster feature selection (MCFS)
[4] and unsupervised discriminative feature selection (UDFS)
[5]. Although these methods have been proved to be effec-
tive in many cases, they ignore the underlying correlations
between different views. It is apparent that they are not suit-
able for multi-view data.

In order to take full advantage of the complementary in-
formation from multi-view data, methods in the cross-view
strategy exploit correlations and interactions between differ-
ent views to choose a representative feature subset [6]. Rep-
resentative algorithms include multi-view feature selection
(MVFS) [7], robust multi-view feature selection (RMFS) [8]
and adaptive similarity embedding for unsupervised multi-
view feature selection (ASE-UMFS) [9]. These methods rou-
tinely assign one weight for one feature view representation,
where the inter-view correlations are only exploited at the
view-level, whereas the explicit correlations between features
across multiple views are overlooked. It is desired that the
full-order structural information are considered in unsuper-
vised multi-view feature selection models.

Motivated by these observations, in this paper, we pro-
pose a tensor-based unsupervised multi-view feature selec-
tion (TUFS) method with the aim of exploring the unsuper-
vised heterogeneous data fusion and feature selection. With
the help of tensor factorization, TUFS explores the full-order
interactions among multi-view data, without the need to con-
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struct the input tensor physically. Additionally, multiple local
geometric structures for different views are constructed to fa-
cilitate unsupervised feature selection. To solve the proposed
model, we devise an alternating optimization algorithm. Ex-
periments and comparisons on three image datasets demon-
strate the superiority and potential of the proposed TUFS.

The structure of this paper is organized as follows. Sec-
tion 2 introduces important notations and problem descrip-
tion. Section 3 firstly presents the formulation of the proposed
TUFS model and then provides an alternative optimization al-
gorithm. Experiments and comparisons are demonstrated in
Section 4. Finally, we conclude the paper in Section 5.

2. PRELIMINARY

2.1. Tensor Algebra and Notation

The important symbols used throughout this paper are sum-
marized in Table 1. Tensors are higher order arrays that gen-
eralize the notion of vectors (first order) and matrices (sec-
ond order). Following [10], an M th order tensor is denoted
by X ∈ R

I1×···×IM and its elements by xi1,··· ,iM . All vec-
tors are column vectors unless otherwise specified. For an
arbitrary matrix X ∈ R

I×J , the ith row and jth column are
denoted by xi and xj , respectively.

The Hadamard product is the element-wise matrix prod-
uct. An important property of Hadamard product is a ∗ b =
diag(a)b. The Kronecker product is an operation resulting
in a block matrix. An important application of Kronecker
product is to rewrite the matrix equation AXB = C into
the equivalent vector equation (BT

A)vec(X) = vec(C). The
inner product of two tensors X ,Y ∈ R

I1×···×IM is defined
by 〈X ,Y〉 =

∑I1
i1=1 . . .

∑IM
i1=1 xi1,··· ,iM yi1,··· ,iM . The out-

er product of vectors x(m) ∈ R
Im for m ∈ [1 : M ] is an

M th order tensor and defined element-wise by (x(1) ◦ · · · ◦
x(M))i1,··· ,iM = x

(1)
i1

· · ·x(M)
iM

=
∏M

m=1 x
(m)
im

for all values
of the indices. In particular, for X = x(1) · · · ◦ x(M) and
Y = y(1) ◦ · · · ◦ y(M), it holds that

〈X ,Y〉 =
M∏

m=1

〈x(m),y(m)〉 =
M∏

m=1

x(m)Ty(m). (1)

2.2. Problem Description

Given a multi-view dataset {X(v)}Vv=1 with V views, where
X(v) ∈ R

Dv×N represents the vth view feature matrix with
N instances and Dv features. Our goal of unsupervised multi-
view feature selection is to select a subset of important fea-
tures from multiple feature spaces by leveraging the comple-
mentary information and exploiting the full-order interactions
among different views with the help of tensor manipulation.

Table 1. List of important symbols.
Symbol Definition and description
x,x,X,X denotes a scale, a vector, a matrix, a tensor
〈·, ·〉 denotes inner product
◦ denotes outer product
∗ denotes Hadamard (elementwise) product
⊗ denotes Kronecker product
AB denotes A⊗ B
Tr(·) denotes trace function
diag(·) denotes a diagonal matrix
vec(·) denotes the column stacking operator
‖ · ‖F denotes Frobenius norm of matrix or tensor
‖ · ‖2,1 denotes �2,1 norm of matrix

3. PROPOSED MODEL

In this section, we first introduce the formulation of the pro-
posed model, and then provide an optimization algorithm as
solution.

3.1. Model Formulation

Unsupervised feature selection methods select a subset of rep-
resentative features without using any label information [11].
After reviewing existing models, we find that most of them
are formulated by a linear regression-like objective [12]. Giv-
en an input matrix X ∈ R

D×N and a cluster indicator matrix
F ∈ R

N×K , the linear model is given by

∥∥XTW − F
∥∥2
F
=

N∑

n=1

K∑

k=1

(
xT
nwk − fn,k

)2
, (2)

where W ∈ R
D×K is a weight matrix, xn and wk are the

nth and kth column of X and W, and fn,k is the nth row and
kth column element of F. We denote the indicator vector as
ek = [0, · · · , 0, 1, 0, · · · , 0]T ∈ R

K , where the only nonzero
element with constant value 1 is the kth entry. From Eq. (2),
we have

fn,k = xT
nwk = xTWek = 〈xn ◦ ek,W〉 . (3)

Similarly, assume that there are two views, Eq. (3) can be
rewritten as follows:

fn,k = x(1)T

n Wkx
(2)
n = 〈x(1)

n ◦ x(2)
n ◦ ek,W〉, (4)

where W ∈ R
D1×D2×K is the weight tensor.

However, only the highest-order interactions are explored
in this way. To explain the data sufficiently, the lower-order
interactions should be considered. Hence, we nest all interac-
tions up to full-order:

fn,k = wk +

2∑

v=1

x(v)T

n w
(v)
k + x(1)T

n Wkx
(2)
n . (5)

2
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To achieve full-order interactions, an extra feature with con-
stant value 1 is added to the input vector x

(v)
n , i.e., z(v)n =

[x
(v)
n ; 1] ∈ R

Dv+1. Then Eq. (5) can be rewritten as

fn,k = 〈z(1)n ◦ z(2)n ◦ ek,W〉 = 〈Zn ◦ ek,W〉. (6)

Following this recipe, Eq. (6) can be easily extended
to the problem with more views. Given a V -view dataset,
Zn = z

(1)
n ◦· · ·◦z(V )

n ∈ R
(D1+1)×···×(DV +1) is the tensor rep-

resentation from the inputs and W ∈ R
(D1+1)×···×(DV +1)×K

is the weight tensor to be learnt. The number of parameters
in W is K

∏V
v=1(Dv + 1). It is apparent that the extended

model for V views suffers from the over-parameterized prob-
lem. Besides, all interactions for different views and different
clusters are not possible to jointly explore from the extended
model. To solve these problems, we assume that there is a
low rank in the effect of interactions and W can be factorized
by CANDECOMP/PARAFAC (CP) decomposition [13] as

W =
R∑

r=1

w(1)
r ◦· · ·◦w(V+1)

r = �W(1), · · · ,W(V+1)�, (7)

where W(v) ∈ R
(Dv+1)×R for v ∈ [1 : V ] is the vth view

factor matrix, W(V+1) ∈ R
K×R is the cluster weight matrix,

w
(v)
r is the column vector, and R is the number of factors.

With the above information, Eq. (6) can be firstly gener-
alized to V views, and then rewritten according to Eq. (1).
Thus, we have

fn,k =
R∑

r=1

〈z(1)r ◦ · · · ◦ z(V )
r ◦ ek,w(1)

r ◦ · · · ◦w(V+1)
r 〉

=

R∑

r=1

w
(V+1)
k,r (z(1)

T

n w(1)
r ) · · · (z(V )T

n w(V )
r ) (8)

= ((z(1)
T

n W(1)) ∗ · · · ∗ (z(V )T

n W(V )))w(V+1)kT

.

By using Eq. (8), we can derive the multi-view setting of Eq.
(2) to explore the full-order interactions. The corresponding
formulation is given by

‖(
V∏

v=1

∗(Z(v)TW(v)))W(V+1)T − F‖2F . (9)

To perform feature selection, an �2,1-norm regularization
is imposed on each weight matrix W(v). This will ensure
the sparsity of W(v) in row, making it suitable for feature
selection. Thus, we have

min
W(v),F

‖(
V∏

v=1

∗(Z(v)TW(v)))W(V+1)T − F‖2F

+ γ

V+1∑

v=1

‖W(v)‖2,1, s.t. FTF = I,F ≥ 0,

(10)

where FTF = I and F ≥ 0 is the orthogonal and nonnegative
constraint, and γ is the parameter to control the sparsity.

In reality, it is vital to preserve the local geometric struc-
tures of data for unsupervised feature selection. The cor-
responding optimization can be formulated as Tr(FTLF),
where L = A − S is a Laplacian matrix and A is a diag-
onal matrix with an,n =

∑N
j=1 sn,j . S ∈ R

N×N is the sim-
ilarity matrix learnt by a k-nearest neighbor graph from X.
For multi-view data, the local geometric structures of differ-
ent views should be introduced to exploit their relations by the
shared cluster indicators. Finally, we formulate the objective
function of the proposed TUFS model as

min
W(v),F,αv

‖(
V∏

v=1

∗(Z(v)TW(v)))W(V+1)T − F‖2F

+ γ

V+1∑

v=1

‖W(v)‖2,1 + λ

V∑

v=1

αvTr(F
TL(v)F)

s.t. FTF = I,F ≥ 0.

(11)

where λ is the parameter for trade-off, and αv is the weight
to measure the contribution of the local geometric structures
in each view. Once W(v) is learned, feature selection can
be realized by ranking features according to ‖(wi)(v)‖2 (i =
1, . . . , Dv) in a descending order.

3.2. Optimization Algorithm

The objective function of TUFS is not convex, and solving
Eq. (11) directly is difficult. Therefore, we devise an op-
timization algorithm by alternatively updating one variable
while fixing the others. For convenience, we denote Π =∏V

v=1 ∗(Z(v)TW(v)) ∈ R
N×R as the embedding matrix

from all the views and Π(−v) =
∏V

v′ �=v ∗(Z(v′)TW(v′)) ∈
R

N×R as the embedding matrix from all other views except
the vth view. In addition, due to the non-smooth regulariza-
tion term of �2,1-norm, following [14], we relax ‖W(v)‖2,1
by Tr(W(v)TP(v)W(v)), where P(v) is a diagonal matrix
with diagonal elements p

(v)
i,i = 1

2‖w(v)
i ‖2

. The pseudocode

of TUFS is presented in Algorithm 1.
Update W(v) (1 ≤ v ≤ V ): With other fixed variables,

the optimization w.r.t W(v) becomes

min
W(v)

‖(Π(−v) ∗ (Z(v)TW(v)))W(V+1)T − F‖2F

+ γTr(W(v)TP(v)W(v)).

(12)

Taking the derivative of Eq. (12) w.r.t W(v) and setting it to
zero, we have

Z(v)(Π(−v) ∗ ((Π(−v) ∗ (Z(v)TW(v)))W(V+1)TW(V+1)))

− Z(v)(Π(−v) ∗ (FW(V+1))) + γP(v)W(v) = 0. (13)

To solve Eq. (13), we state the following theorem, and the
proof can be found in [15].

3
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Algorithm 1 TUFS

Input: Multi-view data {X(v)}Vv=1, where X(v) ∈ R
Dv×N ,

number of clusters K, number of factors R, and regularized
parameters γ and λ;

Output: The weight matrices {W(v)}Vv=1;
1: Initialize W(v), F and αv = 1/V ;
2: Allocate Z(v) = [X(v); 1];
3: repeat
4: for v = 1 to V do
5: Calculate the diagonal matrix P(v) by W(v);
6: Update W(v) by solving Eq. (13);
7: end for
8: Calculate the diagonal matrix P(V+1) by W(V+1);
9: Update W(V+1) by solving Eq. (17);

10: Update F via Eq. (20);
11: for v = 1 to V do
12: Update α(v) = 1/(2 ∗

√
FTL(v)F);

13: end for
14: until Convergence

Theorem 1. Given any matrices A ∈ R
M×N , B ∈ R

N×R,
C ∈ R

R×R, D ∈ R
M×M and E ∈ R

M×R, the solution to
the following equation

A(B ∗ ((B ∗ (ATX))C)) +DX = E (14)

is equivalent to the solution to the following equation

Hvec(X) = vec(E), (15)

where H = IAdiag(vec(B))CT
I diag(vec(B))IA + ID.

According to Theorem 1, letting A = Z(v), B = Π(−v),
C = W(V+1)TW(V+1),D = γP(v), and E = Z(v)(Π(−v)∗
(FW(V+1))), we can formulate Eq. (13) in the form of Eq.
(15). Since H is invertible, the solution in the vector form is
given by vec(W(v)) = H−1vec(E).

Update W(V+1): With other fixed variables, the opti-
mization w.r.t W(V+1) becomes

min
W(V +1)

‖ΠW(V+1)T−F‖2F+γTr(W(V+1)TP(V+1)W(V+1)).

(16)
Taking the derivative of Eq. (16) w.r.t W(V+1) and setting it
to zero, we have

W(V+1)ΠTΠ+ γP(V+1)W(V+1) = FTΠ. (17)

Eq. (17) is the Sylvester equation, which can be solved by the
lyap function in MATLAB.

Update F: With other fixed variables, by introducing the
Lagrangian multiplier Φ, the Lagrange function for the opti-
mization w.r.t F becomes

min
F

‖ΠW(V+1)T − F‖2F + λ

V∑

v=1

αvTr(F
TL(v)F)

+
β

2
‖FTF− Ic‖2F +Tr(ΦFT ).

(18)

Fig. 1. Example images from the VOC07 dataset.

Taking the derivative of Eq. (18) w.r.t F and setting it to zero,
we have

F−ΠW(V+1)T + λMF+ βFFTF− βF+Φ = 0. (19)

According to the Karush-Kuhn-Tuckre (KKT) condition
φi,jfi,j = 0, the update rule for F is given by

fi,j = fi,j
[ΠW(V+1)T + βF]i,j

[F+ λMF+ βFFTF]i,j
. (20)

Update αv: With other fixed variables, following [16,
17], the optimal solution of αv is adaptively updated by the
equation αv = 1/(2 ∗

√
Tr(FTL(v)F)).

4. EXPERIMENTS

4.1. Experimental Setup

Datasets. In the experiments, three public image datasets are
adopted for evaluation. The VOC07 dataset consists of 1424
different images, which are associated with 5 categories and
described by three feature representations, including dense
hue (DH), generalized search trees (GIST) and harris hue
(HH). The OBJECT dataset contains 3467 distinct images,
which are related to 7 categories and represented by two fea-
ture representations, including color moments (CM) and col-
or correlogram (CORR). The SCENE dataset includes 5109
different images, which are affiliated to 10 categories and de-
scribed by CM and CORR. Example images from the VOC07
image database are shown in Fig. 1.

Comparison methods. To verify the effectiveness of
TUFS, we use the state-of-the-art methods for comparison.
MaxVar, LapScore [3], MCFS [4] and UDFS [5] are typi-
cal unsupervised single-view feature selection methods. They
concatenate all features from multiple views as the input.
MVFS [7], RMFS [8] and ASE-UMFS [9] are representative
unsupervised multi-view feature selection methods.

Evaluation Metrics. To assess the quality of selected fea-
tures, we adopt three popular metrics for evaluation, includ-
ing clustering accuracy (ACC), normalized mutual informa-
tion (NMI) and purity. For the above evaluation metrics, the
larger the value, the better the clustering performance.

Parameter Settings. There are some important parame-
ters in TUFS to be set in advance. The parameters γ and λ are
both tuned from {10−2, 10−1, ..., 102}, while the parameter
R is selected from {5, 10, · · · , 30}. The numbers of select-
ed features are varied as {20%, 25%, ..., 50%} of the size of

4
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Table 2. Comparisons of different methods on three image datasets.
Dataset Measure MaxVar LapScore MCFS UDFS MVFS RMFS ASE-UMFS TUFS

VOC07
ACC 40.98 39.64 39.85 37.04 40.89 42.59 43.09 45.58
NMI 14.89 9.19 9.88 12.16 13.09 12.59 13.73 16.73

Purity 50.28 47.86 46.51 47.79 48.46 48.40 50.01 52.00

OBJECT
ACC 26.61 29.06 27.40 26.72 29.19 29.16 29.70 31.34
NMI 3.59 4.58 4.94 3.78 5.40 5.43 5.50 6.99

Purity 27.88 30.29 29.61 28.04 30.64 30.23 31.39 32.49

SCENE
ACC 30.20 25.31 23.54 22.77 27.63 28.00 28.46 31.06
NMI 9.97 9.44 5.99 5.53 9.49 9.40 9.84 12.11

Purity 32.60 29.96 26.22 24.78 29.95 29.91 31.70 34.80
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Fig. 2. Comparisons of different methods w.r.t different num-
bers of selected features on three image datasets.

features. The multi-view learning with adaptive neighbours
(MLAN) [18] is used to cluster samples based on the selected
features. We repeat each experiment 20 times and report the
average performance.

4.2. Experimental Results

Comparison of clustering results. The experimental results
of different methods on the three image datasets are shown
in Table 2. As can be seen from Table 2, TUFS consistent-
ly achieves superior results over other competing methods.
Compared to MaxVar, LapScore, MCFS and UDFS, the en-
hancement of TUFS is obvious. For instance, on the VOC07
dataset, TUFS achieves more than 15% ACC improvement
in average. On the OBJECT dataset, the average purity im-
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Fig. 3. The convergence curves of TUFS.

provement of TUFS is also high at 15%. These observations
confirm the superiority of TUFS than the single-view feature
selection methods. In comparison with MVFS, RMFS and
ASE-UMFS, TUFS also achieves competitive results. On the
SCENE dataset, TUFS gets more than 10% ACC improve-
ment and 14% purity improvement in average. This demon-
strates the advantage of TUFS than the compared multi-view
feature selection methods.

To further validate the effectiveness of TUFS, we con-
duct the experimental study with different numbers of select-
ed features. Fig. 2 presents the comparison results on the
three image datasets. On the OBJECT and SCENE datasets,
TUFS consistently outperforms the competing methods with
different numbers of selected features. On the VOC07 datset,
TUFS obtains inferior results with a small number of selected
features. Moreover, the performance of TUFS is much more
stable when the percentage of selected features is greater than
35%. This indicates that by jointly utilizing tensor factoriza-
tion and constructing the local geometric structures of differ-
ent views, the quality of selected features is greatly improved,
which benefits image recognition.

Convergence study. To verify the convergence of Algo-
rithm 1, we experimentally study the convergence behavior of
TUFS. The parameters γ, λ and R are fixed to be 0.1, 0.1 and
5. Fig. 3 presents the convergence learning curves. From Fig.
3, we find that the objective function values rapidly decrease
at the first few iterations and converge within 10 iterations for
all image datasets. This demonstrates that the proposed opti-
mization algorithm is effective and converges quickly to solve
the problem of Eq. (11).
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Fig. 4. Performance variation of TUFS in terms of ACC w.r.t
different values of R.
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Fig. 5. Performance variation of TUFS in terms of ACC w.r.t
different values for the parameters γ and λ.

Parameter sensitivity study. There are three impor-
tant parameters R, γ and λ in TUFS. To study the sensi-
tivity of these parameters, we run with different values for
R ∈ {5, 10, ..., 30} and γ, λ ∈ {10−2, 10−1, ..., 102}. As
shown in Fig. 4, with the fixed parameters γ = 0.1 and
λ = 0.1, TUFS achieves best performance when R = 30
on the VOC07 and SCENE datasets, while R = 5 on the OB-
JECT dataset. From Fig. 5, by setting R = 5, different set-
tings for the parameters γ and λ show different results. TUFS
obtains the best result on the VOC07 dataset when γ = 0.01
and λ = 10. Therefore, it is necessary to set suitable values
of the three parameters for TUFS.

5. CONCLUSION

In this paper, we proposed a tensor-based unsupervised multi-
view feature selection (TUFS) method for image recognition.
To select representative features, TUFS uses tensor factoriza-
tion and constructs the local geometric structures of differ-
ent views, which can explore the full-order interactions and
learn the latent structures for multiple views, without phys-
ically constructing the higher-order tensor data. An alterna-
tive optimization algorithm is designed to solve the proposed
TUFS model. Experiments and comparisons on three image
datasets demonstrated that TUFS is effective for unsupervised
multi-view feature selection and outperforms the state-of-the-
art methods.
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